关于Kenmotsu流形的Csi-ξ⊥黎曼浸入的一个注记

S. Kumar, R. Prasad
{"title":"关于Kenmotsu流形的Csi-ξ⊥黎曼浸入的一个注记","authors":"S. Kumar, R. Prasad","doi":"10.31926/but.mif.2022.2.64.2.11","DOIUrl":null,"url":null,"abstract":"The object of this article is to define and study the Clairaut semi-invariant ξ⊥ -Riemannian submersions (Csi-ξ⊥ -Riemannian submersions, In short) from Kenmotsu manifolds onto Riemannian manifolds. We obtain necessary and sufficient condition for a semi-invariant ξ⊥-Riemannian submersion to be Csi-ξ⊥-Riemannian submersion. We also work out on some fundamental differential geometric properties of these submersions. Moreover, we present consequent non-trivial example of such submersion.","PeriodicalId":53266,"journal":{"name":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on Csi-ξ⊥-Riemannian submersions from Kenmotsu manifolds\",\"authors\":\"S. Kumar, R. Prasad\",\"doi\":\"10.31926/but.mif.2022.2.64.2.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of this article is to define and study the Clairaut semi-invariant ξ⊥ -Riemannian submersions (Csi-ξ⊥ -Riemannian submersions, In short) from Kenmotsu manifolds onto Riemannian manifolds. We obtain necessary and sufficient condition for a semi-invariant ξ⊥-Riemannian submersion to be Csi-ξ⊥-Riemannian submersion. We also work out on some fundamental differential geometric properties of these submersions. Moreover, we present consequent non-trivial example of such submersion.\",\"PeriodicalId\":53266,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2022.2.64.2.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2022.2.64.2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是定义和研究从Kenmotsu流形到黎曼流形的Clairaut半不变ξ⊥-黎曼浸入(Csi-ξ⊥-黎曼浸入,简而言之)。我们得到了一个半不变ξ⊥-黎曼浸入是Csi-ξ⊥-黎曼浸入的充要条件。我们还计算出这些浸没物的一些基本的微分几何性质。此外,我们还提出了相应的这种浸没的重要例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on Csi-ξ⊥-Riemannian submersions from Kenmotsu manifolds
The object of this article is to define and study the Clairaut semi-invariant ξ⊥ -Riemannian submersions (Csi-ξ⊥ -Riemannian submersions, In short) from Kenmotsu manifolds onto Riemannian manifolds. We obtain necessary and sufficient condition for a semi-invariant ξ⊥-Riemannian submersion to be Csi-ξ⊥-Riemannian submersion. We also work out on some fundamental differential geometric properties of these submersions. Moreover, we present consequent non-trivial example of such submersion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信