基于计算机视觉技术的智能植物病害识别

S. Manoharan, Bilal Sariffodeen, K.T Ramasinghe, L.H Rajaratne, D. Kasthurirathna, J. Wijekoon
{"title":"基于计算机视觉技术的智能植物病害识别","authors":"S. Manoharan, Bilal Sariffodeen, K.T Ramasinghe, L.H Rajaratne, D. Kasthurirathna, J. Wijekoon","doi":"10.1109/IEMCON51383.2020.9284919","DOIUrl":null,"url":null,"abstract":"The soil composition around the world is depleting at a rapid rate due to overexploitation by the unsustainable use of fertilizers. Streamlining the availability of nutrient deficiency and fertilizer related knowledge among impoverished farming communities would promoter environmentally and scientifically sustainable farming practices. Thus, contributing to several Sustainable Development Goals set out by the United Nations. The most direct solution to the inappropriate fertilizer usage is to add only the necessary amounts of fertilizer required by plants to produce a significant yield without nutrition deficiencies. To this end this paper proposes a Smart Nutrient Disorder Identification system employing computer vision and machine learning techniques for identification purposes and a decentralized blockchain platform to streamline a bias-less procurement system. The proposed system yielded 88% accuracy in disorder identification, while also enabling secure, transparent flow of verified information.","PeriodicalId":6871,"journal":{"name":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"1 1","pages":"0445-0451"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smart Plant Disorder Identification using Computer Vision Technology\",\"authors\":\"S. Manoharan, Bilal Sariffodeen, K.T Ramasinghe, L.H Rajaratne, D. Kasthurirathna, J. Wijekoon\",\"doi\":\"10.1109/IEMCON51383.2020.9284919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The soil composition around the world is depleting at a rapid rate due to overexploitation by the unsustainable use of fertilizers. Streamlining the availability of nutrient deficiency and fertilizer related knowledge among impoverished farming communities would promoter environmentally and scientifically sustainable farming practices. Thus, contributing to several Sustainable Development Goals set out by the United Nations. The most direct solution to the inappropriate fertilizer usage is to add only the necessary amounts of fertilizer required by plants to produce a significant yield without nutrition deficiencies. To this end this paper proposes a Smart Nutrient Disorder Identification system employing computer vision and machine learning techniques for identification purposes and a decentralized blockchain platform to streamline a bias-less procurement system. The proposed system yielded 88% accuracy in disorder identification, while also enabling secure, transparent flow of verified information.\",\"PeriodicalId\":6871,\"journal\":{\"name\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"1 1\",\"pages\":\"0445-0451\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMCON51383.2020.9284919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMCON51383.2020.9284919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于不可持续使用化肥的过度开发,世界各地的土壤成分正在迅速枯竭。在贫困农业社区中简化营养缺乏和肥料相关知识的可得性将促进环境和科学上可持续的农业实践。因此,为联合国制定的若干可持续发展目标作出贡献。解决肥料使用不当的最直接的办法是只施用植物所需的必要量的肥料,以产生显著的产量而不缺乏营养。为此,本文提出了一种智能营养失调识别系统,采用计算机视觉和机器学习技术进行识别,并采用分散的区块链平台简化无偏见的采购系统。所提出的系统在疾病识别方面的准确率达到88%,同时还实现了安全、透明的验证信息流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart Plant Disorder Identification using Computer Vision Technology
The soil composition around the world is depleting at a rapid rate due to overexploitation by the unsustainable use of fertilizers. Streamlining the availability of nutrient deficiency and fertilizer related knowledge among impoverished farming communities would promoter environmentally and scientifically sustainable farming practices. Thus, contributing to several Sustainable Development Goals set out by the United Nations. The most direct solution to the inappropriate fertilizer usage is to add only the necessary amounts of fertilizer required by plants to produce a significant yield without nutrition deficiencies. To this end this paper proposes a Smart Nutrient Disorder Identification system employing computer vision and machine learning techniques for identification purposes and a decentralized blockchain platform to streamline a bias-less procurement system. The proposed system yielded 88% accuracy in disorder identification, while also enabling secure, transparent flow of verified information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信