{"title":"各种高压SiC晶闸管的导通研究","authors":"H. O’Brien, A. Ogunniyi, W. Shaheen, S. Ryu","doi":"10.1109/WIPDA.2015.7369283","DOIUrl":null,"url":null,"abstract":"This research is focused on characterization of the turn-on transition of high voltage SiC thyristors of different epilayer thicknesses and active area sizes to determine their suitability and limitations in high-dI/dt, fast-switching applications. The unique aspects of this study include the very high current density being switched through the thyristors over a short period of time at initial turn-on, resulting in very high instantaneous dissipated power over the small device volume. The devices that were characterized were 6 kV, 0.5 cm2 super gate turn-off thyristors (SGTOs), 10 kV, 1.05 cm2 SGTOs, and 15 kV, 1.05 cm2 SGTOs, all fabricated by Cree, Inc. for the Army Research Laboratory. The highest dI/dt and current density were 13 kA/microsecond and 3.2 kA/cm2 for a parallel pair of 0.5 cm2 thyristors, with pulse current peaking 250 ns from initial gate trigger. These evaluations help determine tradeoffs between series-stacking two lower-voltage thyristors versus using a single thicker-epi device, or paralleling two small-area devices versus switching one larger device, for fast-switching applications.","PeriodicalId":6538,"journal":{"name":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"73 1","pages":"5-9"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of the turn-on of various high-voltage SiC thyristors\",\"authors\":\"H. O’Brien, A. Ogunniyi, W. Shaheen, S. Ryu\",\"doi\":\"10.1109/WIPDA.2015.7369283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research is focused on characterization of the turn-on transition of high voltage SiC thyristors of different epilayer thicknesses and active area sizes to determine their suitability and limitations in high-dI/dt, fast-switching applications. The unique aspects of this study include the very high current density being switched through the thyristors over a short period of time at initial turn-on, resulting in very high instantaneous dissipated power over the small device volume. The devices that were characterized were 6 kV, 0.5 cm2 super gate turn-off thyristors (SGTOs), 10 kV, 1.05 cm2 SGTOs, and 15 kV, 1.05 cm2 SGTOs, all fabricated by Cree, Inc. for the Army Research Laboratory. The highest dI/dt and current density were 13 kA/microsecond and 3.2 kA/cm2 for a parallel pair of 0.5 cm2 thyristors, with pulse current peaking 250 ns from initial gate trigger. These evaluations help determine tradeoffs between series-stacking two lower-voltage thyristors versus using a single thicker-epi device, or paralleling two small-area devices versus switching one larger device, for fast-switching applications.\",\"PeriodicalId\":6538,\"journal\":{\"name\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"volume\":\"73 1\",\"pages\":\"5-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2015.7369283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2015.7369283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the turn-on of various high-voltage SiC thyristors
This research is focused on characterization of the turn-on transition of high voltage SiC thyristors of different epilayer thicknesses and active area sizes to determine their suitability and limitations in high-dI/dt, fast-switching applications. The unique aspects of this study include the very high current density being switched through the thyristors over a short period of time at initial turn-on, resulting in very high instantaneous dissipated power over the small device volume. The devices that were characterized were 6 kV, 0.5 cm2 super gate turn-off thyristors (SGTOs), 10 kV, 1.05 cm2 SGTOs, and 15 kV, 1.05 cm2 SGTOs, all fabricated by Cree, Inc. for the Army Research Laboratory. The highest dI/dt and current density were 13 kA/microsecond and 3.2 kA/cm2 for a parallel pair of 0.5 cm2 thyristors, with pulse current peaking 250 ns from initial gate trigger. These evaluations help determine tradeoffs between series-stacking two lower-voltage thyristors versus using a single thicker-epi device, or paralleling two small-area devices versus switching one larger device, for fast-switching applications.