Rafael Cancado de Faria, Elena V Shashkova, Colin Flaveny, Angel Baldan, Kyle S McCommis, Susana Gonzalo
{"title":"STAT1驱动干扰素样反应和早衰症的衰老标志。","authors":"Rafael Cancado de Faria, Elena V Shashkova, Colin Flaveny, Angel Baldan, Kyle S McCommis, Susana Gonzalo","doi":"10.59368/agingbio.20230009","DOIUrl":null,"url":null,"abstract":"<p><p>Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging disease caused by the mutant lamin-A protein \"progerin,\" features robust sterile inflammation/interferon (IFN)-like response. Targeting inflammation delays cellular and organismal HGPS phenotypes. However, specific mechanisms driving the sterile inflammation/IFN-like response and how this response causes tissue degeneration/loss in HGPS are unknown. We demonstrate that signal transducer and activator of transcription 1 (STAT1) drives the IFN-like response and aging phenotypes in HGPS cellular and mouse models. Calcitriol and baricitinib strongly repress sterile inflammation/IFN-like response, improving hallmarks of progerin-expressing cells such as mitochondrial, autophagy, and proliferation defects. <i>In vivo,</i> calcitriol or baricitinib extend lifespan of progeria mice, and baricitinib alone or combined with a high-caloric/high-fat diet has a remarkable impact reducing skin, aortic, and adipose tissue degeneration. Critically, Stat1 haploinsufficiency reduces tissue degeneration/loss and extends lifespan of progeria mice, recapitulating baricitinib benefits. Our study unveils STAT1 as a driver of the IFN-like response and HGPS pathology and suggests that aberrant STAT1 signaling contributes to aging, providing new therapeutic possibilities for HGPS and other inflammation/IFN response-associated diseases.</p>","PeriodicalId":72130,"journal":{"name":"Aging Biology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007894/pdf/","citationCount":"0","resultStr":"{\"title\":\"STAT1 Drives the Interferon-Like Response and Aging Hallmarks in Progeria.\",\"authors\":\"Rafael Cancado de Faria, Elena V Shashkova, Colin Flaveny, Angel Baldan, Kyle S McCommis, Susana Gonzalo\",\"doi\":\"10.59368/agingbio.20230009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging disease caused by the mutant lamin-A protein \\\"progerin,\\\" features robust sterile inflammation/interferon (IFN)-like response. Targeting inflammation delays cellular and organismal HGPS phenotypes. However, specific mechanisms driving the sterile inflammation/IFN-like response and how this response causes tissue degeneration/loss in HGPS are unknown. We demonstrate that signal transducer and activator of transcription 1 (STAT1) drives the IFN-like response and aging phenotypes in HGPS cellular and mouse models. Calcitriol and baricitinib strongly repress sterile inflammation/IFN-like response, improving hallmarks of progerin-expressing cells such as mitochondrial, autophagy, and proliferation defects. <i>In vivo,</i> calcitriol or baricitinib extend lifespan of progeria mice, and baricitinib alone or combined with a high-caloric/high-fat diet has a remarkable impact reducing skin, aortic, and adipose tissue degeneration. Critically, Stat1 haploinsufficiency reduces tissue degeneration/loss and extends lifespan of progeria mice, recapitulating baricitinib benefits. Our study unveils STAT1 as a driver of the IFN-like response and HGPS pathology and suggests that aberrant STAT1 signaling contributes to aging, providing new therapeutic possibilities for HGPS and other inflammation/IFN response-associated diseases.</p>\",\"PeriodicalId\":72130,\"journal\":{\"name\":\"Aging Biology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007894/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59368/agingbio.20230009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59368/agingbio.20230009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
STAT1 Drives the Interferon-Like Response and Aging Hallmarks in Progeria.
Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging disease caused by the mutant lamin-A protein "progerin," features robust sterile inflammation/interferon (IFN)-like response. Targeting inflammation delays cellular and organismal HGPS phenotypes. However, specific mechanisms driving the sterile inflammation/IFN-like response and how this response causes tissue degeneration/loss in HGPS are unknown. We demonstrate that signal transducer and activator of transcription 1 (STAT1) drives the IFN-like response and aging phenotypes in HGPS cellular and mouse models. Calcitriol and baricitinib strongly repress sterile inflammation/IFN-like response, improving hallmarks of progerin-expressing cells such as mitochondrial, autophagy, and proliferation defects. In vivo, calcitriol or baricitinib extend lifespan of progeria mice, and baricitinib alone or combined with a high-caloric/high-fat diet has a remarkable impact reducing skin, aortic, and adipose tissue degeneration. Critically, Stat1 haploinsufficiency reduces tissue degeneration/loss and extends lifespan of progeria mice, recapitulating baricitinib benefits. Our study unveils STAT1 as a driver of the IFN-like response and HGPS pathology and suggests that aberrant STAT1 signaling contributes to aging, providing new therapeutic possibilities for HGPS and other inflammation/IFN response-associated diseases.