A. Aladov, A. Zakgeim, Julia V. Semyashkina, A. Chernyakov
{"title":"动态控制的LED灯具用于外科手术过程中生物组织的对比可视化","authors":"A. Aladov, A. Zakgeim, Julia V. Semyashkina, A. Chernyakov","doi":"10.33383/2021-059","DOIUrl":null,"url":null,"abstract":"The article reviews the main theoretical, engineering and technological, circuit-engineering and software aspects of development of a dynamically controlled luminaire based on light emitting diodes for contrast visualisation of biological tissues during surgical procedures. The design concept of such surgical luminaire is proposed, which combines high-quality white lighting and coloured accent lighting increasing the contrast of visualisation of particular tissues and borders between them. The calculation model of the luminaire optical system allows maximising the level of illumination and uniformity of illuminance and colour of the surgical area. The software of the luminaire allows to independently modifying intensity of radiation of six coloured light emitting diodes with blue (460 nm), turquoise (505 nm), green (530 nm), green-yellow (550 nm), orange (590 nm) and red (630 nm) light colours for synthesis of coloured lighting of virtually any chromaticity. The level of general lighting by means of phosphor light emitting diodes can also be varied within a wide range. Chromaticity and level of lighting are adjusted by means of pulse-duration modulation of light emitting diode current and the light parameters of the luminaire are controlled by a remote computer via a radio channel.\nThis medical luminaire is primarily designed for lighting during surgical procedures and it can also be used for visual diagnostics based on the colour of analysed tissues.","PeriodicalId":49907,"journal":{"name":"Light & Engineering","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamically Controlled LED Luminaire for Contrast Visualisation of Biological Tissues During Surgical Procedures\",\"authors\":\"A. Aladov, A. Zakgeim, Julia V. Semyashkina, A. Chernyakov\",\"doi\":\"10.33383/2021-059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article reviews the main theoretical, engineering and technological, circuit-engineering and software aspects of development of a dynamically controlled luminaire based on light emitting diodes for contrast visualisation of biological tissues during surgical procedures. The design concept of such surgical luminaire is proposed, which combines high-quality white lighting and coloured accent lighting increasing the contrast of visualisation of particular tissues and borders between them. The calculation model of the luminaire optical system allows maximising the level of illumination and uniformity of illuminance and colour of the surgical area. The software of the luminaire allows to independently modifying intensity of radiation of six coloured light emitting diodes with blue (460 nm), turquoise (505 nm), green (530 nm), green-yellow (550 nm), orange (590 nm) and red (630 nm) light colours for synthesis of coloured lighting of virtually any chromaticity. The level of general lighting by means of phosphor light emitting diodes can also be varied within a wide range. Chromaticity and level of lighting are adjusted by means of pulse-duration modulation of light emitting diode current and the light parameters of the luminaire are controlled by a remote computer via a radio channel.\\nThis medical luminaire is primarily designed for lighting during surgical procedures and it can also be used for visual diagnostics based on the colour of analysed tissues.\",\"PeriodicalId\":49907,\"journal\":{\"name\":\"Light & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33383/2021-059\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33383/2021-059","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamically Controlled LED Luminaire for Contrast Visualisation of Biological Tissues During Surgical Procedures
The article reviews the main theoretical, engineering and technological, circuit-engineering and software aspects of development of a dynamically controlled luminaire based on light emitting diodes for contrast visualisation of biological tissues during surgical procedures. The design concept of such surgical luminaire is proposed, which combines high-quality white lighting and coloured accent lighting increasing the contrast of visualisation of particular tissues and borders between them. The calculation model of the luminaire optical system allows maximising the level of illumination and uniformity of illuminance and colour of the surgical area. The software of the luminaire allows to independently modifying intensity of radiation of six coloured light emitting diodes with blue (460 nm), turquoise (505 nm), green (530 nm), green-yellow (550 nm), orange (590 nm) and red (630 nm) light colours for synthesis of coloured lighting of virtually any chromaticity. The level of general lighting by means of phosphor light emitting diodes can also be varied within a wide range. Chromaticity and level of lighting are adjusted by means of pulse-duration modulation of light emitting diode current and the light parameters of the luminaire are controlled by a remote computer via a radio channel.
This medical luminaire is primarily designed for lighting during surgical procedures and it can also be used for visual diagnostics based on the colour of analysed tissues.
期刊介绍:
Our magazine
develops comprehensive communication within the lighting community, providing opportunities for discussion and free expression of opinions of specialists of different profiles;
contributes to the convergence of science and engineering practice, the search for opportunities for the application of research results in lighting and technological applications of light;
keeps the scientific community up to date with the latest advances in the theory of the light field, providing readers with operational professional information;
initiates international cooperation, promotes and distributes the results of Russian authors in the international professional community;
provides equal opportunities for authors from different regions of Russia and other countries.
The journal publishes articles in the following areas:
visual and non-visual effects of radiation on humans;
light field theory;
photometry and colorimetry;
sources of light;
ballasts;
light devices, their design and production technology;
lighting and irradiation installation;
light signaling;
methods of mathematical modeling of light devices and installations;
problems of energy saving in lighting, installation and operation of lighting installations;
modern production technologies of lighting products for lighting control systems;
innovative design solutions;
innovations in lighting and lighting design;
the study of the effect on plants and animals, problems of using light in medicine;
problems of disinfection of premises, water and smell elimination with the help of technology of UV radiation using;
problems of light in the ocean and space.