Md. Ashraful Islam, M.A. Hasib, M. Hasan, S. Talapatra
{"title":"闭孔多孔材料在不同形状弹丸冲击下的变形行为和力学响应","authors":"Md. Ashraful Islam, M.A. Hasib, M. Hasan, S. Talapatra","doi":"10.15282/ijame.19.3.2022.10.0770","DOIUrl":null,"url":null,"abstract":"Closed-cell cellular materials gained tremendous interest in their application in aerospace, shipbuilding and defence industries due to their exceptional impact energy absorption and lightweight characteristics. To assess the suitability of these materials in practical utilisation, a proper characterisation in dynamic loading is necessary. This paper investigates closed-cell aluminium foam's deformation behaviour due to low-velocity projectile impact in experimentation and finite element analysis. The collapse mechanism was numerically and empirically examined. The experiment and the finite element analysis were found to be in good agreement. The low-velocity projectile impact tests were conducted using an instrumented drop-tower with several projectile tips with an impact energy of 105 J. Finite Element modelling using ABAQUS explicit was undertaken. The results reveal that FE modelling of true foam properties using solid geometry has a good correlation with experimental results. In this study, four impactors/indenters (flat-faced, hemispheric, conical, and truncated-conical) were used. A detailed structural collapse during the low-velocity dynamic impact has been explored with XCT data and finite element tools.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"31 2 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation Behaviour and Mechanical Response of Closed-cell Cellular Materials under Projectile Impact Using Various Shapes Impactors\",\"authors\":\"Md. Ashraful Islam, M.A. Hasib, M. Hasan, S. Talapatra\",\"doi\":\"10.15282/ijame.19.3.2022.10.0770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Closed-cell cellular materials gained tremendous interest in their application in aerospace, shipbuilding and defence industries due to their exceptional impact energy absorption and lightweight characteristics. To assess the suitability of these materials in practical utilisation, a proper characterisation in dynamic loading is necessary. This paper investigates closed-cell aluminium foam's deformation behaviour due to low-velocity projectile impact in experimentation and finite element analysis. The collapse mechanism was numerically and empirically examined. The experiment and the finite element analysis were found to be in good agreement. The low-velocity projectile impact tests were conducted using an instrumented drop-tower with several projectile tips with an impact energy of 105 J. Finite Element modelling using ABAQUS explicit was undertaken. The results reveal that FE modelling of true foam properties using solid geometry has a good correlation with experimental results. In this study, four impactors/indenters (flat-faced, hemispheric, conical, and truncated-conical) were used. A detailed structural collapse during the low-velocity dynamic impact has been explored with XCT data and finite element tools.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"31 2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.3.2022.10.0770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.3.2022.10.0770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Deformation Behaviour and Mechanical Response of Closed-cell Cellular Materials under Projectile Impact Using Various Shapes Impactors
Closed-cell cellular materials gained tremendous interest in their application in aerospace, shipbuilding and defence industries due to their exceptional impact energy absorption and lightweight characteristics. To assess the suitability of these materials in practical utilisation, a proper characterisation in dynamic loading is necessary. This paper investigates closed-cell aluminium foam's deformation behaviour due to low-velocity projectile impact in experimentation and finite element analysis. The collapse mechanism was numerically and empirically examined. The experiment and the finite element analysis were found to be in good agreement. The low-velocity projectile impact tests were conducted using an instrumented drop-tower with several projectile tips with an impact energy of 105 J. Finite Element modelling using ABAQUS explicit was undertaken. The results reveal that FE modelling of true foam properties using solid geometry has a good correlation with experimental results. In this study, four impactors/indenters (flat-faced, hemispheric, conical, and truncated-conical) were used. A detailed structural collapse during the low-velocity dynamic impact has been explored with XCT data and finite element tools.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.