Weiming Gu, Quanfeng Huang, Jianxia Sun, Dan Liu, X. Duan
{"title":"利用香蕉花提取物合成绿色纳米银,并对其抗菌活性进行研究","authors":"Weiming Gu, Quanfeng Huang, Jianxia Sun, Dan Liu, X. Duan","doi":"10.47836/ifrj.30.3.06","DOIUrl":null,"url":null,"abstract":"Silver nanoparticles (AgNPs) were synthesised using banana flower extract (BFE) as a reducing and stabilising agent. Spherical, well-dispersed, and stable AgNPs were formed and characterised by ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), and zeta potential. The in vitro antimicrobial properties of AgNPs against Staphylococcus aureus and Escherichia coli were then investigated. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus and E. coli were 32 and 16 μg/mL, respectively. E. coli was more sensitive to AgNPs than S. aureus due to differences in cell wall structures of the bacteria. Regarding the bactericidal mechanisms of AgNPs, an increase in cell permeability and a distinctive deformation in cellular morphology was observed. The antibacterial effect decreased with the addition of the antioxidant N-acetyl-l-cysteine (NAC) which acted as ROS scavenger. In summary, the antibacterial mechanism was likely a combination of cell membrane damage and ROS induction.","PeriodicalId":13754,"journal":{"name":"international food research journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of silver nanoparticles using banana flower extract, and their antibacterial activity\",\"authors\":\"Weiming Gu, Quanfeng Huang, Jianxia Sun, Dan Liu, X. Duan\",\"doi\":\"10.47836/ifrj.30.3.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silver nanoparticles (AgNPs) were synthesised using banana flower extract (BFE) as a reducing and stabilising agent. Spherical, well-dispersed, and stable AgNPs were formed and characterised by ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), and zeta potential. The in vitro antimicrobial properties of AgNPs against Staphylococcus aureus and Escherichia coli were then investigated. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus and E. coli were 32 and 16 μg/mL, respectively. E. coli was more sensitive to AgNPs than S. aureus due to differences in cell wall structures of the bacteria. Regarding the bactericidal mechanisms of AgNPs, an increase in cell permeability and a distinctive deformation in cellular morphology was observed. The antibacterial effect decreased with the addition of the antioxidant N-acetyl-l-cysteine (NAC) which acted as ROS scavenger. In summary, the antibacterial mechanism was likely a combination of cell membrane damage and ROS induction.\",\"PeriodicalId\":13754,\"journal\":{\"name\":\"international food research journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international food research journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.47836/ifrj.30.3.06\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international food research journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.47836/ifrj.30.3.06","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Green synthesis of silver nanoparticles using banana flower extract, and their antibacterial activity
Silver nanoparticles (AgNPs) were synthesised using banana flower extract (BFE) as a reducing and stabilising agent. Spherical, well-dispersed, and stable AgNPs were formed and characterised by ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA), and zeta potential. The in vitro antimicrobial properties of AgNPs against Staphylococcus aureus and Escherichia coli were then investigated. The minimum inhibitory concentration (MIC) of AgNPs against S. aureus and E. coli were 32 and 16 μg/mL, respectively. E. coli was more sensitive to AgNPs than S. aureus due to differences in cell wall structures of the bacteria. Regarding the bactericidal mechanisms of AgNPs, an increase in cell permeability and a distinctive deformation in cellular morphology was observed. The antibacterial effect decreased with the addition of the antioxidant N-acetyl-l-cysteine (NAC) which acted as ROS scavenger. In summary, the antibacterial mechanism was likely a combination of cell membrane damage and ROS induction.
期刊介绍:
The International Food Research Journal (IFRJ) publishes papers in English, six (6) issues a year with the coverage of:
Food Science and Technology
Nutrition and Dietetics
Agriculture, multidisciplinary
Chemistry, multidisciplinary
The scope of the Journal includes:
Food Science, Food Technology and Food Biotechnology
Product Development and Sensory Evaluation
Food Habits, Nutrition, and Health
Food Safety and Quality
Food Chemistry, Food Microbiology, Food Analysis and Testing
Food Engineering
Food Packaging
Food Waste Management
Food Entrepreneur
Food Regulatory
Post-Harvest Food Management
Food Supply Chain Management
Halal Food and Management