{"title":"单位范数约束线性拟合问题的快速鲁棒估计","authors":"Daiki Ikami, T. Yamasaki, K. Aizawa","doi":"10.1109/CVPR.2018.00850","DOIUrl":null,"url":null,"abstract":"M-estimator using iteratively reweighted least squares (IRLS) is one of the best-known methods for robust estimation. However, IRLS is ineffective for robust unit-norm constrained linear fitting (UCLF) problems, such as fundamental matrix estimation because of a poor initial solution. We overcome this problem by developing a novel objective function and its optimization, named iteratively reweighted eigenvalues minimization (IREM). IREM is guaranteed to decrease the objective function and achieves fast convergence and high robustness. In robust fundamental matrix estimation, IREM performs approximately 5-500 times faster than random sampling consensus (RANSAC) while preserving comparable or superior robustness.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"57 1","pages":"8147-8155"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fast and Robust Estimation for Unit-Norm Constrained Linear Fitting Problems\",\"authors\":\"Daiki Ikami, T. Yamasaki, K. Aizawa\",\"doi\":\"10.1109/CVPR.2018.00850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"M-estimator using iteratively reweighted least squares (IRLS) is one of the best-known methods for robust estimation. However, IRLS is ineffective for robust unit-norm constrained linear fitting (UCLF) problems, such as fundamental matrix estimation because of a poor initial solution. We overcome this problem by developing a novel objective function and its optimization, named iteratively reweighted eigenvalues minimization (IREM). IREM is guaranteed to decrease the objective function and achieves fast convergence and high robustness. In robust fundamental matrix estimation, IREM performs approximately 5-500 times faster than random sampling consensus (RANSAC) while preserving comparable or superior robustness.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"57 1\",\"pages\":\"8147-8155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast and Robust Estimation for Unit-Norm Constrained Linear Fitting Problems
M-estimator using iteratively reweighted least squares (IRLS) is one of the best-known methods for robust estimation. However, IRLS is ineffective for robust unit-norm constrained linear fitting (UCLF) problems, such as fundamental matrix estimation because of a poor initial solution. We overcome this problem by developing a novel objective function and its optimization, named iteratively reweighted eigenvalues minimization (IREM). IREM is guaranteed to decrease the objective function and achieves fast convergence and high robustness. In robust fundamental matrix estimation, IREM performs approximately 5-500 times faster than random sampling consensus (RANSAC) while preserving comparable or superior robustness.