M. K. Gomes, Willian H. A. da Silva, Antonio Ribas Neto, Julio Fajardo, E. Rohmer, E. Fujiwara
{"title":"用单通道光纤力肌图传感器检测手部姿势:概念验证研究","authors":"M. K. Gomes, Willian H. A. da Silva, Antonio Ribas Neto, Julio Fajardo, E. Rohmer, E. Fujiwara","doi":"10.3390/automation3040031","DOIUrl":null,"url":null,"abstract":"Force myography (FMG) detects hand gestures based on muscular contractions, featuring as an alternative to surface electromyography. However, typical FMG systems rely on spatially-distributed arrays of force-sensing resistors to resolve ambiguities. The aim of this proof-of-concept study is to develop a method for identifying hand poses from the static and dynamic components of FMG waveforms based on a compact, single-channel optical fiber sensor. As the user performs a gesture, a micro-bending transducer positioned on the belly of the forearm muscles registers the dynamic optical signals resulting from the exerted forces. A Raspberry Pi 3 minicomputer performs data acquisition and processing. Then, convolutional neural networks correlate the FMG waveforms with the target postures, yielding a classification accuracy of (93.98 ± 1.54)% for eight postures, based on the interrogation of a single fiber transducer.","PeriodicalId":90013,"journal":{"name":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Hand Poses with a Single-Channel Optical Fiber Force Myography Sensor: A Proof-of-Concept Study\",\"authors\":\"M. K. Gomes, Willian H. A. da Silva, Antonio Ribas Neto, Julio Fajardo, E. Rohmer, E. Fujiwara\",\"doi\":\"10.3390/automation3040031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Force myography (FMG) detects hand gestures based on muscular contractions, featuring as an alternative to surface electromyography. However, typical FMG systems rely on spatially-distributed arrays of force-sensing resistors to resolve ambiguities. The aim of this proof-of-concept study is to develop a method for identifying hand poses from the static and dynamic components of FMG waveforms based on a compact, single-channel optical fiber sensor. As the user performs a gesture, a micro-bending transducer positioned on the belly of the forearm muscles registers the dynamic optical signals resulting from the exerted forces. A Raspberry Pi 3 minicomputer performs data acquisition and processing. Then, convolutional neural networks correlate the FMG waveforms with the target postures, yielding a classification accuracy of (93.98 ± 1.54)% for eight postures, based on the interrogation of a single fiber transducer.\",\"PeriodicalId\":90013,\"journal\":{\"name\":\"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/automation3040031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Conference on Control & Automation : [proceedings]. IEEE Mediterranean Conference on Control & Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/automation3040031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of Hand Poses with a Single-Channel Optical Fiber Force Myography Sensor: A Proof-of-Concept Study
Force myography (FMG) detects hand gestures based on muscular contractions, featuring as an alternative to surface electromyography. However, typical FMG systems rely on spatially-distributed arrays of force-sensing resistors to resolve ambiguities. The aim of this proof-of-concept study is to develop a method for identifying hand poses from the static and dynamic components of FMG waveforms based on a compact, single-channel optical fiber sensor. As the user performs a gesture, a micro-bending transducer positioned on the belly of the forearm muscles registers the dynamic optical signals resulting from the exerted forces. A Raspberry Pi 3 minicomputer performs data acquisition and processing. Then, convolutional neural networks correlate the FMG waveforms with the target postures, yielding a classification accuracy of (93.98 ± 1.54)% for eight postures, based on the interrogation of a single fiber transducer.