基于接触点的膳食图像食物区域分割

Chamin Morikawa, Haruki Sugiyama, K. Aizawa
{"title":"基于接触点的膳食图像食物区域分割","authors":"Chamin Morikawa, Haruki Sugiyama, K. Aizawa","doi":"10.1145/2390776.2390779","DOIUrl":null,"url":null,"abstract":"We propose an interactive scheme for segmenting meal images for automated dietary assessment. A smartphone user photographs a meal and marks a few touch points on the resulting image. The segmentation algorithm initializes a set of food segments with the touch points, and grows them using local image features. We evaluate the algorithm with a data set consisting of 300 manually segmented meal images. The precision of segmentation is 0.87, compared with 0.70 for fully automatic segmentation. The results show that the precision of segmentation was significantly improved by incorporating minimal user intervention.","PeriodicalId":91851,"journal":{"name":"CEA'13 : proceedings of the 5th International Workshop on Multimedia for Cooking & Eating Activities : October 21, 2013, Barcelona, Spain. Workshop on Multimedia for Cooking and Eating Activities (5th : 2013 : Barcelona, Spain)","volume":"43 1","pages":"7-12"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Food region segmentation in meal images using touch points\",\"authors\":\"Chamin Morikawa, Haruki Sugiyama, K. Aizawa\",\"doi\":\"10.1145/2390776.2390779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an interactive scheme for segmenting meal images for automated dietary assessment. A smartphone user photographs a meal and marks a few touch points on the resulting image. The segmentation algorithm initializes a set of food segments with the touch points, and grows them using local image features. We evaluate the algorithm with a data set consisting of 300 manually segmented meal images. The precision of segmentation is 0.87, compared with 0.70 for fully automatic segmentation. The results show that the precision of segmentation was significantly improved by incorporating minimal user intervention.\",\"PeriodicalId\":91851,\"journal\":{\"name\":\"CEA'13 : proceedings of the 5th International Workshop on Multimedia for Cooking & Eating Activities : October 21, 2013, Barcelona, Spain. Workshop on Multimedia for Cooking and Eating Activities (5th : 2013 : Barcelona, Spain)\",\"volume\":\"43 1\",\"pages\":\"7-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEA'13 : proceedings of the 5th International Workshop on Multimedia for Cooking & Eating Activities : October 21, 2013, Barcelona, Spain. Workshop on Multimedia for Cooking and Eating Activities (5th : 2013 : Barcelona, Spain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2390776.2390779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEA'13 : proceedings of the 5th International Workshop on Multimedia for Cooking & Eating Activities : October 21, 2013, Barcelona, Spain. Workshop on Multimedia for Cooking and Eating Activities (5th : 2013 : Barcelona, Spain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390776.2390779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们提出了一个交互式方案分割膳食图像自动膳食评估。智能手机用户拍摄一顿饭,并在生成的图像上标记几个触摸点。该分割算法使用接触点初始化一组食物片段,并使用局部图像特征对其进行生长。我们用一个由300张手工分割的膳食图像组成的数据集来评估该算法。分割精度为0.87,而全自动分割精度为0.70。结果表明,在最小的用户干预下,分割精度得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Food region segmentation in meal images using touch points
We propose an interactive scheme for segmenting meal images for automated dietary assessment. A smartphone user photographs a meal and marks a few touch points on the resulting image. The segmentation algorithm initializes a set of food segments with the touch points, and grows them using local image features. We evaluate the algorithm with a data set consisting of 300 manually segmented meal images. The precision of segmentation is 0.87, compared with 0.70 for fully automatic segmentation. The results show that the precision of segmentation was significantly improved by incorporating minimal user intervention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信