化学化学脱合金法制备高比表面积多孔铜球化粉末

IF 1 Q4 ENGINEERING, MANUFACTURING
S. Niauzorau, N. Kublik, A. Hasib, B. Azeredo
{"title":"化学化学脱合金法制备高比表面积多孔铜球化粉末","authors":"S. Niauzorau, N. Kublik, A. Hasib, B. Azeredo","doi":"10.1115/msec2022-85894","DOIUrl":null,"url":null,"abstract":"\n In the past decade, nanoporous metals have been a point of interest in the scientific community because they exhibit chemical, optical, and mechanical properties that are unique from their bulk counterparts. One of the most prominent method for its synthesis is chemical dealloying. While, under electrolytic conditions, dealloying can use process-inputs such as current density and electrical potential to control the ligament size during its synthesis with excellent reproducibility, electroless methods are plagued by the lack of local control of dealloying rates which introduces batch-to-batch variations in ligament size. Given that powder is a format incompatible with electrolysis, this study shows an approach to safely scale fabrication of spherical porous copper powders containing oxides from gas atomized Cu-Al powders. Additionally, the agglomeration that is commonly associated with porous powder fabrication was addressed by its functionalization with an anionic surfactant and powder washing in both deionized water (polar) and anhydrous ethanol (nonpolar). Additionally, hazards associated with its production scaling such as excessive hydrogen evolution, heat generation due to its high-reactivity and exothermic reaction and pyrophoricity are discussed and addressed. As a result of this study, a robust and scalable approach was developed to produce 100 of grams of porous metal powders.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":"40 5 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust and Scalable Synthesis of High Surface Area Porous Copper Spheriodized Powders by Electroless Chemical Dealloying\",\"authors\":\"S. Niauzorau, N. Kublik, A. Hasib, B. Azeredo\",\"doi\":\"10.1115/msec2022-85894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the past decade, nanoporous metals have been a point of interest in the scientific community because they exhibit chemical, optical, and mechanical properties that are unique from their bulk counterparts. One of the most prominent method for its synthesis is chemical dealloying. While, under electrolytic conditions, dealloying can use process-inputs such as current density and electrical potential to control the ligament size during its synthesis with excellent reproducibility, electroless methods are plagued by the lack of local control of dealloying rates which introduces batch-to-batch variations in ligament size. Given that powder is a format incompatible with electrolysis, this study shows an approach to safely scale fabrication of spherical porous copper powders containing oxides from gas atomized Cu-Al powders. Additionally, the agglomeration that is commonly associated with porous powder fabrication was addressed by its functionalization with an anionic surfactant and powder washing in both deionized water (polar) and anhydrous ethanol (nonpolar). Additionally, hazards associated with its production scaling such as excessive hydrogen evolution, heat generation due to its high-reactivity and exothermic reaction and pyrophoricity are discussed and addressed. As a result of this study, a robust and scalable approach was developed to produce 100 of grams of porous metal powders.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":\"40 5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年里,纳米多孔金属一直是科学界感兴趣的一个点,因为它们表现出与块状金属不同的化学、光学和机械性能。其中最主要的合成方法是化学合金化。然而,在电解条件下,在合成过程中,脱合金可以使用电流密度和电势等过程输入来控制韧带大小,并且具有良好的再现性,而化学方法则受到缺乏局部控制脱合金速率的困扰,这导致了韧带大小的批次差异。鉴于粉末是一种与电解不相容的形式,本研究展示了一种安全规模化制造球形多孔铜粉末的方法,该粉末含有气体雾化Cu-Al粉末的氧化物。此外,通过阴离子表面活性剂的功能化和在去离子水(极性)和无水乙醇(非极性)中进行粉末洗涤,解决了通常与多孔粉末制造相关的团聚问题。此外,还讨论并解决了与生产规模相关的危害,如过度的析氢,由于其高反应性和放热反应而产生的热量以及焦性。作为这项研究的结果,开发了一种强大且可扩展的方法来生产100克多孔金属粉末。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust and Scalable Synthesis of High Surface Area Porous Copper Spheriodized Powders by Electroless Chemical Dealloying
In the past decade, nanoporous metals have been a point of interest in the scientific community because they exhibit chemical, optical, and mechanical properties that are unique from their bulk counterparts. One of the most prominent method for its synthesis is chemical dealloying. While, under electrolytic conditions, dealloying can use process-inputs such as current density and electrical potential to control the ligament size during its synthesis with excellent reproducibility, electroless methods are plagued by the lack of local control of dealloying rates which introduces batch-to-batch variations in ligament size. Given that powder is a format incompatible with electrolysis, this study shows an approach to safely scale fabrication of spherical porous copper powders containing oxides from gas atomized Cu-Al powders. Additionally, the agglomeration that is commonly associated with porous powder fabrication was addressed by its functionalization with an anionic surfactant and powder washing in both deionized water (polar) and anhydrous ethanol (nonpolar). Additionally, hazards associated with its production scaling such as excessive hydrogen evolution, heat generation due to its high-reactivity and exothermic reaction and pyrophoricity are discussed and addressed. As a result of this study, a robust and scalable approach was developed to produce 100 of grams of porous metal powders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micro and Nano-Manufacturing
Journal of Micro and Nano-Manufacturing ENGINEERING, MANUFACTURING-
CiteScore
2.70
自引率
0.00%
发文量
12
期刊介绍: The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信