Aravind Natarajan, Arunmoezhi Ramachandran, N. Mittal
{"title":"FEAST:一个轻量级的无锁并发二叉搜索树","authors":"Aravind Natarajan, Arunmoezhi Ramachandran, N. Mittal","doi":"10.1145/3391438","DOIUrl":null,"url":null,"abstract":"We present a lock-free algorithm for concurrent manipulation of a binary search tree (BST) in an asynchronous shared memory system that supports search, insert, and delete operations. In addition to read and write instructions, our algorithm uses (single-word) compare-and-swap (CAS) and bit-test-and-set (BTS) read-modify-write (RMW) instructions, both of which are commonly supported by many modern processors including Intel 64 and AMD64. In contrast to most of the existing concurrent algorithms for a binary search tree, our algorithm is edge-based rather than node-based. When compared to other concurrent algorithms for a binary search tree, modify (insert and delete) operations in our algorithm (a) work on a smaller section of the tree, (b) execute fewer RMW instructions, or (c) use fewer dynamically allocated objects. In our experiments, our lock-free algorithm significantly outperformed all other algorithms for a concurrent binary search tree especially when the contention was high. We also describe modifications to our basic lock-free algorithm so that the amortized complexity of any operation in the modified algorithm can be bounded by the sum of the tree height and the point contention to within a constant factor while preserving the other desirable features of our algorithm.","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"30 1","pages":"10:1-10:64"},"PeriodicalIF":0.9000,"publicationDate":"2020-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"FEAST: A Lightweight Lock-free Concurrent Binary Search Tree\",\"authors\":\"Aravind Natarajan, Arunmoezhi Ramachandran, N. Mittal\",\"doi\":\"10.1145/3391438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a lock-free algorithm for concurrent manipulation of a binary search tree (BST) in an asynchronous shared memory system that supports search, insert, and delete operations. In addition to read and write instructions, our algorithm uses (single-word) compare-and-swap (CAS) and bit-test-and-set (BTS) read-modify-write (RMW) instructions, both of which are commonly supported by many modern processors including Intel 64 and AMD64. In contrast to most of the existing concurrent algorithms for a binary search tree, our algorithm is edge-based rather than node-based. When compared to other concurrent algorithms for a binary search tree, modify (insert and delete) operations in our algorithm (a) work on a smaller section of the tree, (b) execute fewer RMW instructions, or (c) use fewer dynamically allocated objects. In our experiments, our lock-free algorithm significantly outperformed all other algorithms for a concurrent binary search tree especially when the contention was high. We also describe modifications to our basic lock-free algorithm so that the amortized complexity of any operation in the modified algorithm can be bounded by the sum of the tree height and the point contention to within a constant factor while preserving the other desirable features of our algorithm.\",\"PeriodicalId\":42115,\"journal\":{\"name\":\"ACM Transactions on Parallel Computing\",\"volume\":\"30 1\",\"pages\":\"10:1-10:64\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Parallel Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3391438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3391438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
FEAST: A Lightweight Lock-free Concurrent Binary Search Tree
We present a lock-free algorithm for concurrent manipulation of a binary search tree (BST) in an asynchronous shared memory system that supports search, insert, and delete operations. In addition to read and write instructions, our algorithm uses (single-word) compare-and-swap (CAS) and bit-test-and-set (BTS) read-modify-write (RMW) instructions, both of which are commonly supported by many modern processors including Intel 64 and AMD64. In contrast to most of the existing concurrent algorithms for a binary search tree, our algorithm is edge-based rather than node-based. When compared to other concurrent algorithms for a binary search tree, modify (insert and delete) operations in our algorithm (a) work on a smaller section of the tree, (b) execute fewer RMW instructions, or (c) use fewer dynamically allocated objects. In our experiments, our lock-free algorithm significantly outperformed all other algorithms for a concurrent binary search tree especially when the contention was high. We also describe modifications to our basic lock-free algorithm so that the amortized complexity of any operation in the modified algorithm can be bounded by the sum of the tree height and the point contention to within a constant factor while preserving the other desirable features of our algorithm.