{"title":"基于敏捷VNFs按需服务模型和深度强化学习方法的物联网任务调度新框架","authors":"Li Yang","doi":"10.14569/ijacsa.2023.0140308","DOIUrl":null,"url":null,"abstract":"—Recent innovations in the Internet of Things (IoT) have given rise to IoT applications that require quick response times and low latency. Fog computing has proven to be an effective platform for handling IoT applications. It is a significant challenge to deploy fog computing resources effectively because of the heterogeneity of IoT tasks and their delay sensitivity. To take advantage of idle resources in IoT devices, this paper presents an edge computing concept that offloads edge tasks to nearby IoT devices. The IoT-assisted edge computing should meet two conditions, edge services should exploit the computing resources of IoT devices effectively and edge tasks offloaded to IoT devices do not interfere with local IoT tasks. Two main phases are included in the proposed method: virtualization of edge nodes, and task scheduling based on deep reinforcement learning. The first phase offers a layered edge framework. In the second phase, we applied deep reinforcement learning (DRL) to schedule tasks taking into account the diversity of tasks and the heterogeneity of available resources. According to simulation results, our proposed task scheduling method achieves higher levels of task satisfaction and success than existing methods.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Task Scheduling Framework for Internet of Things based on Agile VNFs On-demand Service Model and Deep Reinforcement Learning Method\",\"authors\":\"Li Yang\",\"doi\":\"10.14569/ijacsa.2023.0140308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Recent innovations in the Internet of Things (IoT) have given rise to IoT applications that require quick response times and low latency. Fog computing has proven to be an effective platform for handling IoT applications. It is a significant challenge to deploy fog computing resources effectively because of the heterogeneity of IoT tasks and their delay sensitivity. To take advantage of idle resources in IoT devices, this paper presents an edge computing concept that offloads edge tasks to nearby IoT devices. The IoT-assisted edge computing should meet two conditions, edge services should exploit the computing resources of IoT devices effectively and edge tasks offloaded to IoT devices do not interfere with local IoT tasks. Two main phases are included in the proposed method: virtualization of edge nodes, and task scheduling based on deep reinforcement learning. The first phase offers a layered edge framework. In the second phase, we applied deep reinforcement learning (DRL) to schedule tasks taking into account the diversity of tasks and the heterogeneity of available resources. According to simulation results, our proposed task scheduling method achieves higher levels of task satisfaction and success than existing methods.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A New Task Scheduling Framework for Internet of Things based on Agile VNFs On-demand Service Model and Deep Reinforcement Learning Method
—Recent innovations in the Internet of Things (IoT) have given rise to IoT applications that require quick response times and low latency. Fog computing has proven to be an effective platform for handling IoT applications. It is a significant challenge to deploy fog computing resources effectively because of the heterogeneity of IoT tasks and their delay sensitivity. To take advantage of idle resources in IoT devices, this paper presents an edge computing concept that offloads edge tasks to nearby IoT devices. The IoT-assisted edge computing should meet two conditions, edge services should exploit the computing resources of IoT devices effectively and edge tasks offloaded to IoT devices do not interfere with local IoT tasks. Two main phases are included in the proposed method: virtualization of edge nodes, and task scheduling based on deep reinforcement learning. The first phase offers a layered edge framework. In the second phase, we applied deep reinforcement learning (DRL) to schedule tasks taking into account the diversity of tasks and the heterogeneity of available resources. According to simulation results, our proposed task scheduling method achieves higher levels of task satisfaction and success than existing methods.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications