Sheng Liu, Shuanggen Jin, Songbai Xuan, Xiangqun Liu
{"title":"基于相关分析约束的重磁资料三维数据空间联合反演","authors":"Sheng Liu, Shuanggen Jin, Songbai Xuan, Xiangqun Liu","doi":"10.4401/ag-8750","DOIUrl":null,"url":null,"abstract":"Non-uniqueness, low computational efficiency and large memory requirements are main issues for geophysical data inversion. In this paper, we propose an efficient algorithm for 3D correlationanalysis joint inversion of gravity and magnetic data with high accuracy and low computation effort. Firstly, since the number of the observed field data is smaller than the number of inverted parameters, the calculations of the correlation-analysis for joint inversion of gravity and magnetic data in model space (MS) are transformed into the equivalent calculations in data space (DS), which can reduce the dimensions of the calculation domain, improve the computation efficiency and reduce the non-uniqueness. Then, an improved conjugate gradient (ICG) method is employed for the optimization algorithm, which can facilitate the use of stable functions with sparse factors and improve the accuracy of the inversion. The inversion performed by the combined DS-ICG method for synthetic data tests shows the calculation effort can be effectively reduced, and the issues with non-uniqueness are improved. Finally, the test by real field data can delineate the distribution of underground geological bodies, which illustrates the strong stability and good applicability of our extended method.","PeriodicalId":50766,"journal":{"name":"Annals of Geophysics","volume":"64 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"3-D data-space joint inversion of gravity and magnetic data using a correlation-analysis constraint\",\"authors\":\"Sheng Liu, Shuanggen Jin, Songbai Xuan, Xiangqun Liu\",\"doi\":\"10.4401/ag-8750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-uniqueness, low computational efficiency and large memory requirements are main issues for geophysical data inversion. In this paper, we propose an efficient algorithm for 3D correlationanalysis joint inversion of gravity and magnetic data with high accuracy and low computation effort. Firstly, since the number of the observed field data is smaller than the number of inverted parameters, the calculations of the correlation-analysis for joint inversion of gravity and magnetic data in model space (MS) are transformed into the equivalent calculations in data space (DS), which can reduce the dimensions of the calculation domain, improve the computation efficiency and reduce the non-uniqueness. Then, an improved conjugate gradient (ICG) method is employed for the optimization algorithm, which can facilitate the use of stable functions with sparse factors and improve the accuracy of the inversion. The inversion performed by the combined DS-ICG method for synthetic data tests shows the calculation effort can be effectively reduced, and the issues with non-uniqueness are improved. Finally, the test by real field data can delineate the distribution of underground geological bodies, which illustrates the strong stability and good applicability of our extended method.\",\"PeriodicalId\":50766,\"journal\":{\"name\":\"Annals of Geophysics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.4401/ag-8750\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.4401/ag-8750","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
3-D data-space joint inversion of gravity and magnetic data using a correlation-analysis constraint
Non-uniqueness, low computational efficiency and large memory requirements are main issues for geophysical data inversion. In this paper, we propose an efficient algorithm for 3D correlationanalysis joint inversion of gravity and magnetic data with high accuracy and low computation effort. Firstly, since the number of the observed field data is smaller than the number of inverted parameters, the calculations of the correlation-analysis for joint inversion of gravity and magnetic data in model space (MS) are transformed into the equivalent calculations in data space (DS), which can reduce the dimensions of the calculation domain, improve the computation efficiency and reduce the non-uniqueness. Then, an improved conjugate gradient (ICG) method is employed for the optimization algorithm, which can facilitate the use of stable functions with sparse factors and improve the accuracy of the inversion. The inversion performed by the combined DS-ICG method for synthetic data tests shows the calculation effort can be effectively reduced, and the issues with non-uniqueness are improved. Finally, the test by real field data can delineate the distribution of underground geological bodies, which illustrates the strong stability and good applicability of our extended method.
期刊介绍:
Annals of Geophysics is an international, peer-reviewed, open-access, online journal. Annals of Geophysics welcomes contributions on primary research on Seismology, Geodesy, Volcanology, Physics and Chemistry of the Earth, Oceanography and Climatology, Geomagnetism and Paleomagnetism, Geodynamics and Tectonophysics, Physics and Chemistry of the Atmosphere.
It provides:
-Open-access, freely accessible online (authors retain copyright)
-Fast publication times
-Peer review by expert, practicing researchers
-Free of charge publication
-Post-publication tools to indicate quality and impact
-Worldwide media coverage.
Annals of Geophysics is published by Istituto Nazionale di Geofisica e Vulcanologia (INGV), nonprofit public research institution.