用Wasserstein投影对概率测度进行凸序抽样

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
A. Alfonsi, Jacopo Corbetta, B. Jourdain
{"title":"用Wasserstein投影对概率测度进行凸序抽样","authors":"A. Alfonsi, Jacopo Corbetta, B. Jourdain","doi":"10.1214/19-AIHP1014","DOIUrl":null,"url":null,"abstract":"In this paper, for $\\mu$ and $\\nu$ two probability measures on $\\mathbb{R}^d$ with finite moments of order $\\rho\\ge 1$, we define the respective projections for the $W_\\rho$-Wasserstein distance of $\\mu$ and $\\nu$ on the sets of probability measures dominated by $\\nu$ and of probability measures larger than $\\mu$ in the convex order. The $W_2$-projection of $\\mu$ can be easily computed when $\\mu$ and $\\nu$ have finite support by solving a quadratic optimization problem with linear constraints. In dimension $d=1$, Gozlan et al.~(2018) have shown that the projections do not depend on $\\rho$. We explicit their quantile functions in terms of those of $\\mu$ and $\\nu$. The motivation is the design of sampling techniques preserving the convex order in order to approximate Martingale Optimal Transport problems by using linear programming solvers. We prove convergence of the Wasserstein projection based sampling methods as the sample sizes tend to infinity and illustrate them by numerical experiments.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"62 1","pages":"1706-1729"},"PeriodicalIF":1.2000,"publicationDate":"2017-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Sampling of probability measures in the convex order by Wasserstein projection\",\"authors\":\"A. Alfonsi, Jacopo Corbetta, B. Jourdain\",\"doi\":\"10.1214/19-AIHP1014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for $\\\\mu$ and $\\\\nu$ two probability measures on $\\\\mathbb{R}^d$ with finite moments of order $\\\\rho\\\\ge 1$, we define the respective projections for the $W_\\\\rho$-Wasserstein distance of $\\\\mu$ and $\\\\nu$ on the sets of probability measures dominated by $\\\\nu$ and of probability measures larger than $\\\\mu$ in the convex order. The $W_2$-projection of $\\\\mu$ can be easily computed when $\\\\mu$ and $\\\\nu$ have finite support by solving a quadratic optimization problem with linear constraints. In dimension $d=1$, Gozlan et al.~(2018) have shown that the projections do not depend on $\\\\rho$. We explicit their quantile functions in terms of those of $\\\\mu$ and $\\\\nu$. The motivation is the design of sampling techniques preserving the convex order in order to approximate Martingale Optimal Transport problems by using linear programming solvers. We prove convergence of the Wasserstein projection based sampling methods as the sample sizes tend to infinity and illustrate them by numerical experiments.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"62 1\",\"pages\":\"1706-1729\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/19-AIHP1014\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-AIHP1014","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 30

摘要

在本文中,为 $\mu$ 和 $\nu$ 的两个概率测度 $\mathbb{R}^d$ 有有限阶矩 $\rho\ge 1$,我们定义了各自的投影 $W_\rho$-沃瑟斯坦距离 $\mu$ 和 $\nu$ 的概率测度集上 $\nu$ 概率值大于 $\mu$ 在凸序中。The $W_2$-投影 $\mu$ 什么时候可以轻松计算 $\mu$ 和 $\nu$ 通过求解具有线性约束的二次优化问题获得有限支持。在维度上 $d=1$, Gozlan等人(2018)已经表明,这些预测不依赖于 $\rho$. 我们用的分位数函数来表示它们的分位数函数 $\mu$ 和 $\nu$. 其动机是为了利用线性规划求解器逼近鞅最优运输问题,设计了保持凸阶的采样技术。我们证明了基于Wasserstein投影的采样方法在样本量趋于无穷大时的收敛性,并通过数值实验加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sampling of probability measures in the convex order by Wasserstein projection
In this paper, for $\mu$ and $\nu$ two probability measures on $\mathbb{R}^d$ with finite moments of order $\rho\ge 1$, we define the respective projections for the $W_\rho$-Wasserstein distance of $\mu$ and $\nu$ on the sets of probability measures dominated by $\nu$ and of probability measures larger than $\mu$ in the convex order. The $W_2$-projection of $\mu$ can be easily computed when $\mu$ and $\nu$ have finite support by solving a quadratic optimization problem with linear constraints. In dimension $d=1$, Gozlan et al.~(2018) have shown that the projections do not depend on $\rho$. We explicit their quantile functions in terms of those of $\mu$ and $\nu$. The motivation is the design of sampling techniques preserving the convex order in order to approximate Martingale Optimal Transport problems by using linear programming solvers. We prove convergence of the Wasserstein projection based sampling methods as the sample sizes tend to infinity and illustrate them by numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信