关于气-液-固纳米线生长机理的几个基本问题

IF 3.9 Q2 NANOSCIENCE & NANOTECHNOLOGY
V. Nebol’sin, N. Swaikat
{"title":"关于气-液-固纳米线生长机理的几个基本问题","authors":"V. Nebol’sin, N. Swaikat","doi":"10.1155/2023/7906045","DOIUrl":null,"url":null,"abstract":"This study provides the formation of semiconductor nanowires (NWs) with a singular facet and a curved end surface by the vapor-liquid-solid (VLS) process that is analyzed and explained in details. Given the evidence, it is confirmed that the wettability of a liquid catalyst droplet on a crystal surface and the contact angle between the droplet and crystal play an essential role in the VLS process of NWs development. It is shown that for the VLS mechanism, the formation of NWs depends on the reduction in activation barrier to crystallization caused by the release of surplus-free energy by a spheroidizing drop in the region of the triple junction during the process of lowering surface area. This decreases the necessary supersaturation for the development of NW vertex facets at a fixed growth rate. The source of the extra free energy that drives the catalyst droplet movement during the steady-state development of NWs is the droplet’s outer surface. During the formation of NWs, those angles of inclination of the lateral surface NWs and droplet contact are obtained at which the solid/vapor, solid/liquid, and liquid/vapor interfaces experience the smallest increase in free energy. The wetting hysteresis is demonstrated to occur at the vertex of NWs, and the contact angle of a catalyst droplet may be regarded as an independent and fully-fledged thermodynamic parameter of the system’s state.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About Some Fundamental Aspects of the Growth Mechanism Vapor-Liquid-Solid Nanowires\",\"authors\":\"V. Nebol’sin, N. Swaikat\",\"doi\":\"10.1155/2023/7906045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study provides the formation of semiconductor nanowires (NWs) with a singular facet and a curved end surface by the vapor-liquid-solid (VLS) process that is analyzed and explained in details. Given the evidence, it is confirmed that the wettability of a liquid catalyst droplet on a crystal surface and the contact angle between the droplet and crystal play an essential role in the VLS process of NWs development. It is shown that for the VLS mechanism, the formation of NWs depends on the reduction in activation barrier to crystallization caused by the release of surplus-free energy by a spheroidizing drop in the region of the triple junction during the process of lowering surface area. This decreases the necessary supersaturation for the development of NW vertex facets at a fixed growth rate. The source of the extra free energy that drives the catalyst droplet movement during the steady-state development of NWs is the droplet’s outer surface. During the formation of NWs, those angles of inclination of the lateral surface NWs and droplet contact are obtained at which the solid/vapor, solid/liquid, and liquid/vapor interfaces experience the smallest increase in free energy. The wetting hysteresis is demonstrated to occur at the vertex of NWs, and the contact angle of a catalyst droplet may be regarded as an independent and fully-fledged thermodynamic parameter of the system’s state.\",\"PeriodicalId\":16378,\"journal\":{\"name\":\"Journal of Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7906045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7906045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提供了用气-液-固(VLS)工艺形成具有单一面和弯曲端面的半导体纳米线(NWs),并对其进行了详细的分析和解释。综上所述,液体催化剂液滴在晶体表面的润湿性以及液滴与晶体的接触角在NWs的VLS过程中起着至关重要的作用。结果表明,对于VLS机制,NWs的形成取决于在降低表面积的过程中,三结区域的球化下降释放无剩余能量导致的结晶激活势垒的降低。这减少了以固定增长率发展NW顶点面所必需的过饱和。在NWs稳态发展过程中,驱动催化剂液滴运动的额外自由能的来源是液滴的外表面。在NWs形成过程中,得到了NWs侧向表面和液滴接触的倾斜角,在此角度下,固/气界面、固/液界面和液/气界面的自由能增加最小。结果表明,润湿滞后发生在纳米波的顶点,催化剂液滴的接触角可以看作是系统状态的一个独立的、完全的热力学参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About Some Fundamental Aspects of the Growth Mechanism Vapor-Liquid-Solid Nanowires
This study provides the formation of semiconductor nanowires (NWs) with a singular facet and a curved end surface by the vapor-liquid-solid (VLS) process that is analyzed and explained in details. Given the evidence, it is confirmed that the wettability of a liquid catalyst droplet on a crystal surface and the contact angle between the droplet and crystal play an essential role in the VLS process of NWs development. It is shown that for the VLS mechanism, the formation of NWs depends on the reduction in activation barrier to crystallization caused by the release of surplus-free energy by a spheroidizing drop in the region of the triple junction during the process of lowering surface area. This decreases the necessary supersaturation for the development of NW vertex facets at a fixed growth rate. The source of the extra free energy that drives the catalyst droplet movement during the steady-state development of NWs is the droplet’s outer surface. During the formation of NWs, those angles of inclination of the lateral surface NWs and droplet contact are obtained at which the solid/vapor, solid/liquid, and liquid/vapor interfaces experience the smallest increase in free energy. The wetting hysteresis is demonstrated to occur at the vertex of NWs, and the contact angle of a catalyst droplet may be regarded as an independent and fully-fledged thermodynamic parameter of the system’s state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanotechnology
Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
5.50
自引率
2.40%
发文量
25
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信