非同质衰落信道条件下的多输入多输出空时分组码选择性解码和前向中继协议的研究

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ravi Shankar, Patteti Krishna, Naraiah R
{"title":"非同质衰落信道条件下的多输入多输出空时分组码选择性解码和前向中继协议的研究","authors":"Ravi Shankar, Patteti Krishna, Naraiah R","doi":"10.1177/15485129211047598","DOIUrl":null,"url":null,"abstract":"With the tremendous increase in wireless user traffic, investigation on the end-to-end reliability of wireless networks in practical conditions such as non-homogeneous fading channel conditions is becoming increasingly widespread. Because they fit well to the experimental data, generalized channel fading distributions like κ–μ are well suited for modeling diverse fading channels. This paper analyzes the symbol error rate (SER) and outage probability (OP) performance of multiple-input multiple-output (MIMO) space-time block-code (STBC) selective decode and forward (S-DF) network over κ–μ fading channel conditions considering the additive white Gaussian noise (AWGN). First, the closed-form (CF) analytical expressions for the probability density function (PDF) and the cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) as well as its moment generating function (MGF) are derived. Second, the OP performance is then investigated for various values of the channel fading parameter and SNR regimes. The simulation findings show an increase in SER performance with an improved line-of-sight (LOS) component. Furthermore, the results show that the S-DF relaying systems can function properly even when there is no fading or LOS component. The OP has been increasing with the increase in the value of μ and κ. In medium and high SNR regimes, simulation results exactly match with analytical results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Examination of the multiple-input multiple-output space-time block-code selective decode and forward relaying protocol over non-homogeneous fading channel conditions\",\"authors\":\"Ravi Shankar, Patteti Krishna, Naraiah R\",\"doi\":\"10.1177/15485129211047598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the tremendous increase in wireless user traffic, investigation on the end-to-end reliability of wireless networks in practical conditions such as non-homogeneous fading channel conditions is becoming increasingly widespread. Because they fit well to the experimental data, generalized channel fading distributions like κ–μ are well suited for modeling diverse fading channels. This paper analyzes the symbol error rate (SER) and outage probability (OP) performance of multiple-input multiple-output (MIMO) space-time block-code (STBC) selective decode and forward (S-DF) network over κ–μ fading channel conditions considering the additive white Gaussian noise (AWGN). First, the closed-form (CF) analytical expressions for the probability density function (PDF) and the cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) as well as its moment generating function (MGF) are derived. Second, the OP performance is then investigated for various values of the channel fading parameter and SNR regimes. The simulation findings show an increase in SER performance with an improved line-of-sight (LOS) component. Furthermore, the results show that the S-DF relaying systems can function properly even when there is no fading or LOS component. The OP has been increasing with the increase in the value of μ and κ. In medium and high SNR regimes, simulation results exactly match with analytical results.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129211047598\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211047598","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

随着无线用户流量的急剧增加,对无线网络在非均匀衰落信道等实际条件下的端到端可靠性的研究日益广泛。由于广义信道衰落分布(如κ -μ)与实验数据很好地拟合,因此可以很好地模拟各种衰落信道。本文分析了考虑加性高斯白噪声(AWGN)的多输入多输出(MIMO)空时分组码(STBC)选择性译码转发(S-DF)网络在κ -μ衰落信道条件下的符号误码率(SER)和中断概率(OP)性能。首先,推导了接收信噪比(SNR)的概率密度函数(PDF)和累积分布函数(CDF)及其矩生成函数(MGF)的闭合形式(CF)解析表达式;其次,研究了不同信道衰落参数和信噪比下的OP性能。仿真结果表明,改进的视距(LOS)组件提高了SER性能。此外,结果表明,S-DF中继系统即使在没有衰落或LOS的情况下也能正常工作。OP随μ和κ值的增大而增大。在中、高信噪比条件下,仿真结果与分析结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examination of the multiple-input multiple-output space-time block-code selective decode and forward relaying protocol over non-homogeneous fading channel conditions
With the tremendous increase in wireless user traffic, investigation on the end-to-end reliability of wireless networks in practical conditions such as non-homogeneous fading channel conditions is becoming increasingly widespread. Because they fit well to the experimental data, generalized channel fading distributions like κ–μ are well suited for modeling diverse fading channels. This paper analyzes the symbol error rate (SER) and outage probability (OP) performance of multiple-input multiple-output (MIMO) space-time block-code (STBC) selective decode and forward (S-DF) network over κ–μ fading channel conditions considering the additive white Gaussian noise (AWGN). First, the closed-form (CF) analytical expressions for the probability density function (PDF) and the cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) as well as its moment generating function (MGF) are derived. Second, the OP performance is then investigated for various values of the channel fading parameter and SNR regimes. The simulation findings show an increase in SER performance with an improved line-of-sight (LOS) component. Furthermore, the results show that the S-DF relaying systems can function properly even when there is no fading or LOS component. The OP has been increasing with the increase in the value of μ and κ. In medium and high SNR regimes, simulation results exactly match with analytical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信