硅片上贴装光电器件的瞬态热成像特性

K. Yazawa, D. Kendig, K. Al-Hemyari, A. Shakouri
{"title":"硅片上贴装光电器件的瞬态热成像特性","authors":"K. Yazawa, D. Kendig, K. Al-Hemyari, A. Shakouri","doi":"10.1109/ITHERM.2014.6892431","DOIUrl":null,"url":null,"abstract":"Packaging of optoelectronic devices becomes more and more challenging due to higher heat generation per unit volume. We experimentally investigated the packaging thermal resistance for a semiconductor laser device and compared results for two material alternatives for the electrical passivation layer. We used the time-resolved thermoreflectance technique to obtain the time response for the thermal diffusion. During this investigation, we also discovered another key factor related to the thermal resistance in addition to the passivation layer. The silicon substrate (~700 microns thick) also needs careful consideration for thermal diffusion. We observed some thermal islands across the thickness of the silicon substrate to diffuse and spread the heat. This local anisotropy, however, may be minor as the macroscopic temperature gradient is found to be reasonable. Nevertheless, this localized phenomenon may lead to performance variations in mass production. In the investigated package samples, minor voids and cracks were observed in the copper heat sink area. This may not be anticipated for final manufacturing, but these defects could result in localized higher thermal resistance for some of the arrayed device features on a chip. By using the transient thermoreflectance technique, the heat diffusion process can be observed. This imaging technique enables us to track the temperature over a wide range of time. The time response curve provides an indication of the thermal heat sinking performance of the package structure. The transient thermal response clearly shows two stages of temperature rise. One is the spreading thermal diffusion in the silicon substrate and the other is thermal diffusion into the copper heat sink. The thermal mass for both, is within the time range. In this case, the opposite side of the device of the copper heat sink is connected to the thermal ground with a small thermal resistance. The result demonstrates that a poly silicon passivation layer works better than silicon dioxide and decreases the thermal resistance by almost 30%.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"24 1","pages":"1308-1312"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Transient thermal imaging characterization of a die attached optoelectronic device on silicon\",\"authors\":\"K. Yazawa, D. Kendig, K. Al-Hemyari, A. Shakouri\",\"doi\":\"10.1109/ITHERM.2014.6892431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Packaging of optoelectronic devices becomes more and more challenging due to higher heat generation per unit volume. We experimentally investigated the packaging thermal resistance for a semiconductor laser device and compared results for two material alternatives for the electrical passivation layer. We used the time-resolved thermoreflectance technique to obtain the time response for the thermal diffusion. During this investigation, we also discovered another key factor related to the thermal resistance in addition to the passivation layer. The silicon substrate (~700 microns thick) also needs careful consideration for thermal diffusion. We observed some thermal islands across the thickness of the silicon substrate to diffuse and spread the heat. This local anisotropy, however, may be minor as the macroscopic temperature gradient is found to be reasonable. Nevertheless, this localized phenomenon may lead to performance variations in mass production. In the investigated package samples, minor voids and cracks were observed in the copper heat sink area. This may not be anticipated for final manufacturing, but these defects could result in localized higher thermal resistance for some of the arrayed device features on a chip. By using the transient thermoreflectance technique, the heat diffusion process can be observed. This imaging technique enables us to track the temperature over a wide range of time. The time response curve provides an indication of the thermal heat sinking performance of the package structure. The transient thermal response clearly shows two stages of temperature rise. One is the spreading thermal diffusion in the silicon substrate and the other is thermal diffusion into the copper heat sink. The thermal mass for both, is within the time range. In this case, the opposite side of the device of the copper heat sink is connected to the thermal ground with a small thermal resistance. The result demonstrates that a poly silicon passivation layer works better than silicon dioxide and decreases the thermal resistance by almost 30%.\",\"PeriodicalId\":12453,\"journal\":{\"name\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"24 1\",\"pages\":\"1308-1312\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2014.6892431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于单位体积产生的热量越来越高,光电器件的封装变得越来越具有挑战性。我们实验研究了半导体激光器件的封装热阻,并比较了两种替代材料的电钝化层的结果。我们利用时间分辨热反射技术得到了热扩散的时间响应。在本次调查中,我们还发现了除钝化层外与热阻相关的另一个关键因素。硅衬底(~700微米厚)也需要仔细考虑热扩散。我们观察到一些热岛在硅衬底的厚度上扩散和传播热量。然而,这种局部各向异性可能是次要的,因为宏观温度梯度是合理的。然而,这种局部现象可能会导致大规模生产中的性能变化。在所研究的封装样品中,在铜散热器区域观察到细小的空洞和裂纹。这可能不会在最终制造中出现,但这些缺陷可能会导致芯片上某些阵列器件特性的局部更高的热阻。利用瞬态热反射技术,可以观察到热扩散过程。这种成像技术使我们能够在很长一段时间内跟踪温度。时间响应曲线反映了封装结构的散热性能。瞬态热响应明显表现为两个升温阶段。一种是扩散热扩散在硅衬底,另一种是热扩散到铜散热器。两者的热质量,都在时间范围内。在这种情况下,铜散热器的器件的另一侧与热接地相连,热阻较小。结果表明,多晶硅钝化层的钝化效果优于二氧化硅,其热阻降低了近30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient thermal imaging characterization of a die attached optoelectronic device on silicon
Packaging of optoelectronic devices becomes more and more challenging due to higher heat generation per unit volume. We experimentally investigated the packaging thermal resistance for a semiconductor laser device and compared results for two material alternatives for the electrical passivation layer. We used the time-resolved thermoreflectance technique to obtain the time response for the thermal diffusion. During this investigation, we also discovered another key factor related to the thermal resistance in addition to the passivation layer. The silicon substrate (~700 microns thick) also needs careful consideration for thermal diffusion. We observed some thermal islands across the thickness of the silicon substrate to diffuse and spread the heat. This local anisotropy, however, may be minor as the macroscopic temperature gradient is found to be reasonable. Nevertheless, this localized phenomenon may lead to performance variations in mass production. In the investigated package samples, minor voids and cracks were observed in the copper heat sink area. This may not be anticipated for final manufacturing, but these defects could result in localized higher thermal resistance for some of the arrayed device features on a chip. By using the transient thermoreflectance technique, the heat diffusion process can be observed. This imaging technique enables us to track the temperature over a wide range of time. The time response curve provides an indication of the thermal heat sinking performance of the package structure. The transient thermal response clearly shows two stages of temperature rise. One is the spreading thermal diffusion in the silicon substrate and the other is thermal diffusion into the copper heat sink. The thermal mass for both, is within the time range. In this case, the opposite side of the device of the copper heat sink is connected to the thermal ground with a small thermal resistance. The result demonstrates that a poly silicon passivation layer works better than silicon dioxide and decreases the thermal resistance by almost 30%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信