S. R. Haas, F. R. Nascimento, I. Schneider, C. Gaylarde
{"title":"干燥棒状杆菌对萤石微粒的絮凝作用","authors":"S. R. Haas, F. R. Nascimento, I. Schneider, C. Gaylarde","doi":"10.1590/S0001-37141999000300007","DOIUrl":null,"url":null,"abstract":"The treatment of fine particles dispersed in liquids is common in several industries and especially important in mineral processing. The efficiency of settling operations can be substantially increased by flocculation. The aim of this work was to study the flocculation of fine fluorite particles by the bacterium Corynebacterium xerosis. Flocculation tests, microelectrophoresis measurements and optical microscopy were used to evaluate flocculation. The results showed that C. xerosis cells adhere to the fluorite surfaces promoting the aggregation of the particles. High quality flocs can be obtained rapidly at pH 7.0 using a cell concentration of 40 mg/l, considerably lower than previously reported in the literature. The results are discussed with reference to the surface characteristics of the mineral and of the microorganism.","PeriodicalId":21211,"journal":{"name":"Revista De Microbiologia","volume":"12 1","pages":"225-230"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Flocculation of fine fluorite particles with Corynebacterium xerosis\",\"authors\":\"S. R. Haas, F. R. Nascimento, I. Schneider, C. Gaylarde\",\"doi\":\"10.1590/S0001-37141999000300007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The treatment of fine particles dispersed in liquids is common in several industries and especially important in mineral processing. The efficiency of settling operations can be substantially increased by flocculation. The aim of this work was to study the flocculation of fine fluorite particles by the bacterium Corynebacterium xerosis. Flocculation tests, microelectrophoresis measurements and optical microscopy were used to evaluate flocculation. The results showed that C. xerosis cells adhere to the fluorite surfaces promoting the aggregation of the particles. High quality flocs can be obtained rapidly at pH 7.0 using a cell concentration of 40 mg/l, considerably lower than previously reported in the literature. The results are discussed with reference to the surface characteristics of the mineral and of the microorganism.\",\"PeriodicalId\":21211,\"journal\":{\"name\":\"Revista De Microbiologia\",\"volume\":\"12 1\",\"pages\":\"225-230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De Microbiologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/S0001-37141999000300007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De Microbiologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/S0001-37141999000300007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flocculation of fine fluorite particles with Corynebacterium xerosis
The treatment of fine particles dispersed in liquids is common in several industries and especially important in mineral processing. The efficiency of settling operations can be substantially increased by flocculation. The aim of this work was to study the flocculation of fine fluorite particles by the bacterium Corynebacterium xerosis. Flocculation tests, microelectrophoresis measurements and optical microscopy were used to evaluate flocculation. The results showed that C. xerosis cells adhere to the fluorite surfaces promoting the aggregation of the particles. High quality flocs can be obtained rapidly at pH 7.0 using a cell concentration of 40 mg/l, considerably lower than previously reported in the literature. The results are discussed with reference to the surface characteristics of the mineral and of the microorganism.