观察性研究中限定平均生存时间边际因果效应的匹配设计

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zihan Lin, A. Ni, Bo Lu
{"title":"观察性研究中限定平均生存时间边际因果效应的匹配设计","authors":"Zihan Lin, A. Ni, Bo Lu","doi":"10.1515/jci-2022-0035","DOIUrl":null,"url":null,"abstract":"Abstract Investigating the causal relationship between exposure and time-to-event outcome is an important topic in biomedical research. Previous literature has discussed the potential issues of using hazard ratio (HR) as the marginal causal effect measure due to noncollapsibility. In this article, we advocate using restricted mean survival time (RMST) difference as a marginal causal effect measure, which is collapsible and has a simple interpretation as the difference of area under survival curves over a certain time horizon. To address both measured and unmeasured confounding, a matched design with sensitivity analysis is proposed. Matching is used to pair similar treated and untreated subjects together, which is generally more robust than outcome modeling due to potential misspecifications. Our propensity score matched RMST difference estimator is shown to be asymptotically unbiased, and the corresponding variance estimator is calculated by accounting for the correlation due to matching. Simulation studies also demonstrate that our method has adequate empirical performance and outperforms several competing methods used in practice. To assess the impact of unmeasured confounding, we develop a sensitivity analysis strategy by adapting the E-value approach to matched data. We apply the proposed method to the Atherosclerosis Risk in Communities Study (ARIC) to examine the causal effect of smoking on stroke-free survival.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"29 12 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matched design for marginal causal effect on restricted mean survival time in observational studies\",\"authors\":\"Zihan Lin, A. Ni, Bo Lu\",\"doi\":\"10.1515/jci-2022-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Investigating the causal relationship between exposure and time-to-event outcome is an important topic in biomedical research. Previous literature has discussed the potential issues of using hazard ratio (HR) as the marginal causal effect measure due to noncollapsibility. In this article, we advocate using restricted mean survival time (RMST) difference as a marginal causal effect measure, which is collapsible and has a simple interpretation as the difference of area under survival curves over a certain time horizon. To address both measured and unmeasured confounding, a matched design with sensitivity analysis is proposed. Matching is used to pair similar treated and untreated subjects together, which is generally more robust than outcome modeling due to potential misspecifications. Our propensity score matched RMST difference estimator is shown to be asymptotically unbiased, and the corresponding variance estimator is calculated by accounting for the correlation due to matching. Simulation studies also demonstrate that our method has adequate empirical performance and outperforms several competing methods used in practice. To assess the impact of unmeasured confounding, we develop a sensitivity analysis strategy by adapting the E-value approach to matched data. We apply the proposed method to the Atherosclerosis Risk in Communities Study (ARIC) to examine the causal effect of smoking on stroke-free survival.\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"29 12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jci-2022-0035\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2022-0035","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

研究暴露与事件发生时间之间的因果关系是生物医学研究的一个重要课题。先前的文献讨论了使用风险比(HR)作为非溃散性的边际因果效应度量的潜在问题。在本文中,我们主张使用限制平均生存时间(RMST)差作为边际因果效应度量,它是可折叠的,并且可以简单地解释为一定时间范围内生存曲线下面积的差。为了解决测量和未测量的混淆,提出了一种匹配设计和灵敏度分析。匹配用于将相似的治疗和未治疗的受试者配对在一起,由于潜在的错误规范,这通常比结果建模更稳健。我们的倾向分数匹配RMST差估计是渐近无偏的,相应的方差估计是通过考虑匹配的相关性来计算的。仿真研究也表明我们的方法具有足够的经验性能,并且优于实践中使用的几种竞争方法。为了评估未测量混杂的影响,我们通过对匹配数据采用e值方法开发了一种敏感性分析策略。我们将提出的方法应用于社区动脉粥样硬化风险研究(ARIC),以检验吸烟对无卒中生存的因果影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matched design for marginal causal effect on restricted mean survival time in observational studies
Abstract Investigating the causal relationship between exposure and time-to-event outcome is an important topic in biomedical research. Previous literature has discussed the potential issues of using hazard ratio (HR) as the marginal causal effect measure due to noncollapsibility. In this article, we advocate using restricted mean survival time (RMST) difference as a marginal causal effect measure, which is collapsible and has a simple interpretation as the difference of area under survival curves over a certain time horizon. To address both measured and unmeasured confounding, a matched design with sensitivity analysis is proposed. Matching is used to pair similar treated and untreated subjects together, which is generally more robust than outcome modeling due to potential misspecifications. Our propensity score matched RMST difference estimator is shown to be asymptotically unbiased, and the corresponding variance estimator is calculated by accounting for the correlation due to matching. Simulation studies also demonstrate that our method has adequate empirical performance and outperforms several competing methods used in practice. To assess the impact of unmeasured confounding, we develop a sensitivity analysis strategy by adapting the E-value approach to matched data. We apply the proposed method to the Atherosclerosis Risk in Communities Study (ARIC) to examine the causal effect of smoking on stroke-free survival.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信