有限系统连续统中束缚态的湮灭和排斥的代数方法

IF 0.5 4区 数学 Q3 MATHEMATICS
N. Shubin
{"title":"有限系统连续统中束缚态的湮灭和排斥的代数方法","authors":"N. Shubin","doi":"10.1063/5.0142892","DOIUrl":null,"url":null,"abstract":"We present an algebraic approach to the description of bound states in the continuum (BICs) in finite systems with a discrete energy spectrum coupled to several decay channels. General estimations and bounds on the number of linearly independent BICs are derived. We show that the algebraic point of view provides straightforward and illustrative interpretations of typical well-known results, including the Friedrich–Wintgen mechanism and the Pavlov-Verevkin model. Pair-wise annihilation and repulsion of BICs in the energy–parameter space are discussed within generic two- and three-level models. An illustrative algebraic interpretation of such phenomena in Hilbert space is presented.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"37 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Algebraic approach to annihilation and repulsion of bound states in the continuum in finite systems\",\"authors\":\"N. Shubin\",\"doi\":\"10.1063/5.0142892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algebraic approach to the description of bound states in the continuum (BICs) in finite systems with a discrete energy spectrum coupled to several decay channels. General estimations and bounds on the number of linearly independent BICs are derived. We show that the algebraic point of view provides straightforward and illustrative interpretations of typical well-known results, including the Friedrich–Wintgen mechanism and the Pavlov-Verevkin model. Pair-wise annihilation and repulsion of BICs in the energy–parameter space are discussed within generic two- and three-level models. An illustrative algebraic interpretation of such phenomena in Hilbert space is presented.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0142892\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0142892","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种代数方法来描述具有几个衰减通道耦合的离散能谱的有限系统的连续统(BICs)束缚态。给出了线性无关bic数目的一般估计和界。我们表明,代数观点提供了典型的众所周知的结果,包括弗里德里希-温根机制和巴甫洛夫-维列夫金模型的直接和说明性的解释。在一般的二能级和三能级模型中讨论了能量参数空间中bic的对偶湮灭和斥力。给出了这种现象在希尔伯特空间中的一个说明性代数解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic approach to annihilation and repulsion of bound states in the continuum in finite systems
We present an algebraic approach to the description of bound states in the continuum (BICs) in finite systems with a discrete energy spectrum coupled to several decay channels. General estimations and bounds on the number of linearly independent BICs are derived. We show that the algebraic point of view provides straightforward and illustrative interpretations of typical well-known results, including the Friedrich–Wintgen mechanism and the Pavlov-Verevkin model. Pair-wise annihilation and repulsion of BICs in the energy–parameter space are discussed within generic two- and three-level models. An illustrative algebraic interpretation of such phenomena in Hilbert space is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信