12-喹啉取代穿心莲内酯衍生物的合成及其抗凝集作用的初步评价

IF 1 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY
Xue Li, Jiafeng Yu, Xian-Ling Wu, Cui Hu, Xiaoqing Wang
{"title":"12-喹啉取代穿心莲内酯衍生物的合成及其抗凝集作用的初步评价","authors":"Xue Li, Jiafeng Yu, Xian-Ling Wu, Cui Hu, Xiaoqing Wang","doi":"10.1071/ch22248","DOIUrl":null,"url":null,"abstract":"Based on the structure of the natural product andrographolide, a series of novel 12-quinoline substituted derivatives 9 were designed and synthesized. In preliminary biological evaluation, these synthesized compounds showed prominent anti-platelet aggregation activities in response to thrombin and adenosine diphosphate (ADP) agonists. Among them, compound 9o (inhibition rate 55.73%, IC50 0.36 µM/L) had the highest anti-platelet aggregation activity induced by ADP. Compound 9q (inhibition rate 54.31%, IC50 0.30 µM/L) showed the highest anti-platelet aggregation activity induced by thrombin. Most of the derivatives had no significant cytotoxicity. Our research results provide a novel candidate drug structure for anti-platelet aggregation and enrich the scope of application of andrographolide derivatives.","PeriodicalId":8575,"journal":{"name":"Australian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of 12-quinoline substituted andrographolide derivatives and their preliminary evaluation as anti-aggregation drugs\",\"authors\":\"Xue Li, Jiafeng Yu, Xian-Ling Wu, Cui Hu, Xiaoqing Wang\",\"doi\":\"10.1071/ch22248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the structure of the natural product andrographolide, a series of novel 12-quinoline substituted derivatives 9 were designed and synthesized. In preliminary biological evaluation, these synthesized compounds showed prominent anti-platelet aggregation activities in response to thrombin and adenosine diphosphate (ADP) agonists. Among them, compound 9o (inhibition rate 55.73%, IC50 0.36 µM/L) had the highest anti-platelet aggregation activity induced by ADP. Compound 9q (inhibition rate 54.31%, IC50 0.30 µM/L) showed the highest anti-platelet aggregation activity induced by thrombin. Most of the derivatives had no significant cytotoxicity. Our research results provide a novel candidate drug structure for anti-platelet aggregation and enrich the scope of application of andrographolide derivatives.\",\"PeriodicalId\":8575,\"journal\":{\"name\":\"Australian Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1071/ch22248\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1071/ch22248","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于天然产物穿心莲内酯的结构,设计并合成了一系列新的12-喹啉取代衍生物。在初步的生物学评价中,这些合成的化合物对凝血酶和二磷酸腺苷(ADP)激动剂表现出显著的抗血小板聚集活性。其中化合物90(抑制率55.73%,IC50 0.36µM/L)抗ADP诱导的血小板聚集活性最高。化合物9q抗凝血酶诱导的血小板聚集活性最高,抑制率为54.31%,IC50为0.30µM/L。大多数衍生物没有明显的细胞毒性。我们的研究结果为抗血小板聚集提供了一种新的候选药物结构,丰富了穿心莲内酯衍生物的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of 12-quinoline substituted andrographolide derivatives and their preliminary evaluation as anti-aggregation drugs
Based on the structure of the natural product andrographolide, a series of novel 12-quinoline substituted derivatives 9 were designed and synthesized. In preliminary biological evaluation, these synthesized compounds showed prominent anti-platelet aggregation activities in response to thrombin and adenosine diphosphate (ADP) agonists. Among them, compound 9o (inhibition rate 55.73%, IC50 0.36 µM/L) had the highest anti-platelet aggregation activity induced by ADP. Compound 9q (inhibition rate 54.31%, IC50 0.30 µM/L) showed the highest anti-platelet aggregation activity induced by thrombin. Most of the derivatives had no significant cytotoxicity. Our research results provide a novel candidate drug structure for anti-platelet aggregation and enrich the scope of application of andrographolide derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Australian Journal of Chemistry
Australian Journal of Chemistry 化学-化学综合
CiteScore
2.50
自引率
0.00%
发文量
65
审稿时长
1.3 months
期刊介绍: Australian Journal of Chemistry - an International Journal for Chemical Science publishes research papers from all fields of chemical science. Papers that are multidisciplinary or address new or emerging areas of chemistry are particularly encouraged. Thus, the scope is dynamic. It includes (but is not limited to) synthesis, structure, new materials, macromolecules and polymers, supramolecular chemistry, analytical and environmental chemistry, natural products, biological and medicinal chemistry, nanotechnology, and surface chemistry. Australian Journal of Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信