非循环递归类型论中的限制计算和参数

IF 1.7 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Roussanka Loukanova
{"title":"非循环递归类型论中的限制计算和参数","authors":"Roussanka Loukanova","doi":"10.14201/adcaij.29081","DOIUrl":null,"url":null,"abstract":"The paper extends the formal language and the reduction calculus of Moschovakis type-theory of recursion, by adding a restrictor operator on terms with predicative restrictions. Terms with restrictions over memory variables formalise inductive algorithms with generalised, restricted parameters. The extended type-theory of restricted recursion (TTRR) provides computations for algorithmic semantics of mathematical expressions and definite descriptors, in formal and natural languages.\nThe reduction calculi of TTRR provides a mathematical foundation of the work of compilers for reducing recursive programs to iterative ones. The type-theory of acyclic recursion (TTAR) has a special importance to syntax-semantics interfaces in computational grammars.","PeriodicalId":42597,"journal":{"name":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restricted Computations and Parameters in Type-Theory of Acyclic Recursion\",\"authors\":\"Roussanka Loukanova\",\"doi\":\"10.14201/adcaij.29081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper extends the formal language and the reduction calculus of Moschovakis type-theory of recursion, by adding a restrictor operator on terms with predicative restrictions. Terms with restrictions over memory variables formalise inductive algorithms with generalised, restricted parameters. The extended type-theory of restricted recursion (TTRR) provides computations for algorithmic semantics of mathematical expressions and definite descriptors, in formal and natural languages.\\nThe reduction calculi of TTRR provides a mathematical foundation of the work of compilers for reducing recursive programs to iterative ones. The type-theory of acyclic recursion (TTAR) has a special importance to syntax-semantics interfaces in computational grammars.\",\"PeriodicalId\":42597,\"journal\":{\"name\":\"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14201/adcaij.29081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14201/adcaij.29081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文通过在带有谓词限制的项上添加一个限制算子,扩展了Moschovakis递归类型论的形式语言和约简演算。对内存变量有限制的术语用一般化的、受限的参数形式化归纳算法。限制递归的扩展类型理论(TTRR)为数学表达式和确定描述符的算法语义提供了形式语言和自然语言的计算。TTRR的约简演算为编译器将递归程序约简为迭代程序提供了数学基础。在计算语法中,无循环递归的类型论对于语法-语义接口具有特殊的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restricted Computations and Parameters in Type-Theory of Acyclic Recursion
The paper extends the formal language and the reduction calculus of Moschovakis type-theory of recursion, by adding a restrictor operator on terms with predicative restrictions. Terms with restrictions over memory variables formalise inductive algorithms with generalised, restricted parameters. The extended type-theory of restricted recursion (TTRR) provides computations for algorithmic semantics of mathematical expressions and definite descriptors, in formal and natural languages. The reduction calculi of TTRR provides a mathematical foundation of the work of compilers for reducing recursive programs to iterative ones. The type-theory of acyclic recursion (TTAR) has a special importance to syntax-semantics interfaces in computational grammars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
22
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信