Jaafaru Aliyu, S. Osman, Jeya Amantha Kumar, Mohd Ridhuan Mohd Jamil
{"title":"设计和发展一种学习策略,以提高学生对联立方程的参与:一个评价观点","authors":"Jaafaru Aliyu, S. Osman, Jeya Amantha Kumar, Mohd Ridhuan Mohd Jamil","doi":"10.3926/jotse.1691","DOIUrl":null,"url":null,"abstract":"In the 21st century, teaching and learning mathematics courses witness significant expansion and development of technology use, which creates a shift from teacher-centred to student-centred learning engagement. Student engagement (SE) faces many challenges of poor performance and student difficulty in solving simultaneous equations involving indices (SEII), among others. This paper presents an evaluation viewpoint of the learning strategy (LS) with cooperative learning strategy (CLS) and GeoGebra (GG) integration to support SE in SEII. The LS employs the think-pair-share approach and the six (6) principles of learning phases associated with constructivism ideology. The discussion of the preliminary mathematical achievement test (MAT-test) from pre-and post-tests with 41 students who have learned SEII using the developed LS is also presented. Semi-structured interviews were conducted with three experienced lecturers to provide feedback and recommendations on interacting with LS. The themes that emerge from those lecturers include the connection between LS phases, specific material, cooperative activity, playfulness in the discovery process, and thinking. Experts’ feedback on the LS's content reasoning and content learning strategy through a questionnaire was tested using Fleiss multi-rater Kappa and showed good inter-rater reliability and agreement between them. The estimated marginal means covariate of the ANCOVA test was then examined, and the results supported the necessity for a learning strategy to be developed. The findings revealed that the LS, with CLS and GG integration, has the potential to be educationally effective in enhancing SE in SEII.","PeriodicalId":37919,"journal":{"name":"Journal of Technology and Science Education","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The design and development of a learning strategy to enhance students' engagement in simultaneous equations: An evaluation viewpoint\",\"authors\":\"Jaafaru Aliyu, S. Osman, Jeya Amantha Kumar, Mohd Ridhuan Mohd Jamil\",\"doi\":\"10.3926/jotse.1691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the 21st century, teaching and learning mathematics courses witness significant expansion and development of technology use, which creates a shift from teacher-centred to student-centred learning engagement. Student engagement (SE) faces many challenges of poor performance and student difficulty in solving simultaneous equations involving indices (SEII), among others. This paper presents an evaluation viewpoint of the learning strategy (LS) with cooperative learning strategy (CLS) and GeoGebra (GG) integration to support SE in SEII. The LS employs the think-pair-share approach and the six (6) principles of learning phases associated with constructivism ideology. The discussion of the preliminary mathematical achievement test (MAT-test) from pre-and post-tests with 41 students who have learned SEII using the developed LS is also presented. Semi-structured interviews were conducted with three experienced lecturers to provide feedback and recommendations on interacting with LS. The themes that emerge from those lecturers include the connection between LS phases, specific material, cooperative activity, playfulness in the discovery process, and thinking. Experts’ feedback on the LS's content reasoning and content learning strategy through a questionnaire was tested using Fleiss multi-rater Kappa and showed good inter-rater reliability and agreement between them. The estimated marginal means covariate of the ANCOVA test was then examined, and the results supported the necessity for a learning strategy to be developed. The findings revealed that the LS, with CLS and GG integration, has the potential to be educationally effective in enhancing SE in SEII.\",\"PeriodicalId\":37919,\"journal\":{\"name\":\"Journal of Technology and Science Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Technology and Science Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3926/jotse.1691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Technology and Science Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3926/jotse.1691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
The design and development of a learning strategy to enhance students' engagement in simultaneous equations: An evaluation viewpoint
In the 21st century, teaching and learning mathematics courses witness significant expansion and development of technology use, which creates a shift from teacher-centred to student-centred learning engagement. Student engagement (SE) faces many challenges of poor performance and student difficulty in solving simultaneous equations involving indices (SEII), among others. This paper presents an evaluation viewpoint of the learning strategy (LS) with cooperative learning strategy (CLS) and GeoGebra (GG) integration to support SE in SEII. The LS employs the think-pair-share approach and the six (6) principles of learning phases associated with constructivism ideology. The discussion of the preliminary mathematical achievement test (MAT-test) from pre-and post-tests with 41 students who have learned SEII using the developed LS is also presented. Semi-structured interviews were conducted with three experienced lecturers to provide feedback and recommendations on interacting with LS. The themes that emerge from those lecturers include the connection between LS phases, specific material, cooperative activity, playfulness in the discovery process, and thinking. Experts’ feedback on the LS's content reasoning and content learning strategy through a questionnaire was tested using Fleiss multi-rater Kappa and showed good inter-rater reliability and agreement between them. The estimated marginal means covariate of the ANCOVA test was then examined, and the results supported the necessity for a learning strategy to be developed. The findings revealed that the LS, with CLS and GG integration, has the potential to be educationally effective in enhancing SE in SEII.
期刊介绍:
JOTSE is an international Journal aiming at publishing interdisciplinary research within the university education framework and it is especially focused on the fields of Technology and Science. JOTSE serves as an international forum of reference for Engineering education. Teaching innovation oriented, the journal will be issued twice per year (every 6 months) and will include original works, research and projects dealing with the new learning methodologies and new learning supporting tools related to the wide range of disciplines the Engineering studies and profession involve. In addition, JOTSE will also issue special numbers on more technological themes from the different areas of general interest in the industrial world, which may be used as practical cases in classroom tuition and practice. Thereby, getting the working world reality closer to the learning at University. Among other areas of interest, our Journal will be focused on: 1. Education 2.General Science (Physics, Chemistry, Maths,…) 3.Telecommunications 4.Electricity and Electronics 5.Industrial Computing (Digital, Analogic, Robotics, Ergonomics) 6.Aerospatial (aircraft design and building, engines, materials) 7. Automotive (automotive materials, automobile emissions).