{"title":"基于YOLOv5的鱿鱼实时检测与跟踪","authors":"Luxolo Kuhlane, Dane Brown, Marc Marais","doi":"10.1109/icABCD59051.2023.10220521","DOIUrl":null,"url":null,"abstract":"This paper proposes a real-time system for detecting and tracking squids using the YOLOv5 object detection algorithm. The system utilizes a large dataset of annotated squid images and videos to train a YOLOv5 model optimized for detecting and tracking squids. The model is fine-tuned to minimize false positives and optimize detection accuracy. The system is deployed on a GPU-enabled device for real-time processing of video streams and tracking of detected squids across frames. The accuracy and speed of the system make it a valuable tool for marine scientists, conservationists, and fishermen to better understand the behavior and distribution of these elusive creatures. Future work includes incorporating additional computer vision techniques and sensor data to improve tracking accuracy and robustness.","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"17 1","pages":"1-5"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real- Time Detecting and Tracking of Squids Using YOLOv5\",\"authors\":\"Luxolo Kuhlane, Dane Brown, Marc Marais\",\"doi\":\"10.1109/icABCD59051.2023.10220521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a real-time system for detecting and tracking squids using the YOLOv5 object detection algorithm. The system utilizes a large dataset of annotated squid images and videos to train a YOLOv5 model optimized for detecting and tracking squids. The model is fine-tuned to minimize false positives and optimize detection accuracy. The system is deployed on a GPU-enabled device for real-time processing of video streams and tracking of detected squids across frames. The accuracy and speed of the system make it a valuable tool for marine scientists, conservationists, and fishermen to better understand the behavior and distribution of these elusive creatures. Future work includes incorporating additional computer vision techniques and sensor data to improve tracking accuracy and robustness.\",\"PeriodicalId\":51314,\"journal\":{\"name\":\"Big Data\",\"volume\":\"17 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/icABCD59051.2023.10220521\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/icABCD59051.2023.10220521","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Real- Time Detecting and Tracking of Squids Using YOLOv5
This paper proposes a real-time system for detecting and tracking squids using the YOLOv5 object detection algorithm. The system utilizes a large dataset of annotated squid images and videos to train a YOLOv5 model optimized for detecting and tracking squids. The model is fine-tuned to minimize false positives and optimize detection accuracy. The system is deployed on a GPU-enabled device for real-time processing of video streams and tracking of detected squids across frames. The accuracy and speed of the system make it a valuable tool for marine scientists, conservationists, and fishermen to better understand the behavior and distribution of these elusive creatures. Future work includes incorporating additional computer vision techniques and sensor data to improve tracking accuracy and robustness.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.