基于基本几何基元的道路精确高效自定位

Julius Kümmerle, Marc Sons, Fabian Poggenhans, T. Kühner, M. Lauer, C. Stiller
{"title":"基于基本几何基元的道路精确高效自定位","authors":"Julius Kümmerle, Marc Sons, Fabian Poggenhans, T. Kühner, M. Lauer, C. Stiller","doi":"10.1109/ICRA.2019.8793497","DOIUrl":null,"url":null,"abstract":"Highly accurate localization with very limited amount of memory and computational power is one of the big challenges for next generation series cars. We propose localization based on geometric primitives which are compact in representation and further valuable for other tasks like planning and behavior generation. The primitives lack distinctive signature which makes association between detections and map elements highly ambiguous. We resolve ambiguities early in the pipeline by online building up a local map which is key to runtime efficiency. Further, we introduce a new framework to fuse association and odometry measurements based on robust pose graph optimization.We evaluate our localization framework on over 30 min of data recorded in urban scenarios. Our map is memory efficient with less than 8 kB/km and we achieve high localization accuracy with a mean position error of less than 10 cm and a mean yaw angle error of less than 0. 25° at a localization update rate of 50Hz.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"127 1","pages":"5965-5971"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Accurate and Efficient Self-Localization on Roads using Basic Geometric Primitives\",\"authors\":\"Julius Kümmerle, Marc Sons, Fabian Poggenhans, T. Kühner, M. Lauer, C. Stiller\",\"doi\":\"10.1109/ICRA.2019.8793497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly accurate localization with very limited amount of memory and computational power is one of the big challenges for next generation series cars. We propose localization based on geometric primitives which are compact in representation and further valuable for other tasks like planning and behavior generation. The primitives lack distinctive signature which makes association between detections and map elements highly ambiguous. We resolve ambiguities early in the pipeline by online building up a local map which is key to runtime efficiency. Further, we introduce a new framework to fuse association and odometry measurements based on robust pose graph optimization.We evaluate our localization framework on over 30 min of data recorded in urban scenarios. Our map is memory efficient with less than 8 kB/km and we achieve high localization accuracy with a mean position error of less than 10 cm and a mean yaw angle error of less than 0. 25° at a localization update rate of 50Hz.\",\"PeriodicalId\":6730,\"journal\":{\"name\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"127 1\",\"pages\":\"5965-5971\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2019.8793497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8793497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

在非常有限的内存和计算能力的情况下,高度精确的定位是下一代系列汽车面临的一大挑战。我们提出了基于几何原语的定位,它在表示上紧凑,并且对其他任务(如规划和行为生成)有进一步的价值。原语缺乏独特的签名,这使得检测和映射元素之间的关联非常模糊。我们通过在线构建本地映射来解决管道早期的歧义,这是运行时效率的关键。在此基础上,提出了一种新的基于鲁棒姿态图优化的关联测量和里程测量融合框架。我们根据在城市场景中记录的超过30分钟的数据来评估我们的定位框架。我们的地图存储效率低于8 kB/km,我们实现了较高的定位精度,平均位置误差小于10 cm,平均偏航角误差小于0。25°,定位更新速率为50Hz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate and Efficient Self-Localization on Roads using Basic Geometric Primitives
Highly accurate localization with very limited amount of memory and computational power is one of the big challenges for next generation series cars. We propose localization based on geometric primitives which are compact in representation and further valuable for other tasks like planning and behavior generation. The primitives lack distinctive signature which makes association between detections and map elements highly ambiguous. We resolve ambiguities early in the pipeline by online building up a local map which is key to runtime efficiency. Further, we introduce a new framework to fuse association and odometry measurements based on robust pose graph optimization.We evaluate our localization framework on over 30 min of data recorded in urban scenarios. Our map is memory efficient with less than 8 kB/km and we achieve high localization accuracy with a mean position error of less than 10 cm and a mean yaw angle error of less than 0. 25° at a localization update rate of 50Hz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信