$\Lambda _s$ -非均匀多分辨率分析

Pub Date : 2021-11-23 DOI:10.1017/S1446788721000203
S. Pitchai Murugan, G. P. Youvaraj
{"title":"$\\Lambda _s$ -非均匀多分辨率分析","authors":"S. Pitchai Murugan, G. P. Youvaraj","doi":"10.1017/S1446788721000203","DOIUrl":null,"url":null,"abstract":"Abstract Gabardo and Nashed [‘Nonuniform multiresolution analyses and spectral pairs’, J. Funct. Anal. 158(1) (1998), 209–241] have introduced the concept of nonuniform multiresolution analysis (NUMRA), based on the theory of spectral pairs, in which the associated translated set \n$\\Lambda =\\{0,{r}/{N}\\}+2\\mathbb Z$\n is not necessarily a discrete subgroup of \n$\\mathbb{R}$\n , and the translation factor is \n$2\\textrm{N}$\n . Here r is an odd integer with \n$1\\leq r\\leq 2N-1$\n such that r and N are relatively prime. The nonuniform wavelets associated with NUMRA can be used in signal processing, sampling theory, speech recognition and various other areas, where instead of integer shifts nonuniform shifts are needed. In order to further generalize this useful NUMRA, we consider the set \n$\\widetilde {\\Lambda }=\\{0,{r_1}/{N},{r_2}/{N},\\ldots ,{r_q}/{N}\\}+s\\mathbb Z$\n , where s is an even integer, \n$q\\in \\mathbb {N}$\n , \n$r_i$\n is an integer such that \n$1\\leq r_i\\leq sN-1,\\,(r_i,N)=1$\n for all i and \n$N\\geq 2$\n . In this paper, we prove that the concept of NUMRA with the translation set \n$\\widetilde {\\Lambda }$\n is possible only if \n$\\widetilde {\\Lambda }$\n is of the form \n$\\{0,{r}/{N}\\}+s\\mathbb Z$\n . Next we introduce \n$\\Lambda _s$\n -nonuniform multiresolution analysis ( \n$\\Lambda _s$\n -NUMRA) for which the translation set is \n$\\Lambda _s=\\{0,{r}/{N}\\}+s\\mathbb Z$\n and the dilation factor is \n$sN$\n , where s is an even integer. Also, we characterize the scaling functions associated with \n$\\Lambda _s$\n -NUMRA and we give necessary and sufficient conditions for wavelet filters associated with \n$\\Lambda _s$\n -NUMRA.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\Lambda _s$\\n -NONUNIFORM MULTIRESOLUTION ANALYSIS\",\"authors\":\"S. Pitchai Murugan, G. P. Youvaraj\",\"doi\":\"10.1017/S1446788721000203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Gabardo and Nashed [‘Nonuniform multiresolution analyses and spectral pairs’, J. Funct. Anal. 158(1) (1998), 209–241] have introduced the concept of nonuniform multiresolution analysis (NUMRA), based on the theory of spectral pairs, in which the associated translated set \\n$\\\\Lambda =\\\\{0,{r}/{N}\\\\}+2\\\\mathbb Z$\\n is not necessarily a discrete subgroup of \\n$\\\\mathbb{R}$\\n , and the translation factor is \\n$2\\\\textrm{N}$\\n . Here r is an odd integer with \\n$1\\\\leq r\\\\leq 2N-1$\\n such that r and N are relatively prime. The nonuniform wavelets associated with NUMRA can be used in signal processing, sampling theory, speech recognition and various other areas, where instead of integer shifts nonuniform shifts are needed. In order to further generalize this useful NUMRA, we consider the set \\n$\\\\widetilde {\\\\Lambda }=\\\\{0,{r_1}/{N},{r_2}/{N},\\\\ldots ,{r_q}/{N}\\\\}+s\\\\mathbb Z$\\n , where s is an even integer, \\n$q\\\\in \\\\mathbb {N}$\\n , \\n$r_i$\\n is an integer such that \\n$1\\\\leq r_i\\\\leq sN-1,\\\\,(r_i,N)=1$\\n for all i and \\n$N\\\\geq 2$\\n . In this paper, we prove that the concept of NUMRA with the translation set \\n$\\\\widetilde {\\\\Lambda }$\\n is possible only if \\n$\\\\widetilde {\\\\Lambda }$\\n is of the form \\n$\\\\{0,{r}/{N}\\\\}+s\\\\mathbb Z$\\n . Next we introduce \\n$\\\\Lambda _s$\\n -nonuniform multiresolution analysis ( \\n$\\\\Lambda _s$\\n -NUMRA) for which the translation set is \\n$\\\\Lambda _s=\\\\{0,{r}/{N}\\\\}+s\\\\mathbb Z$\\n and the dilation factor is \\n$sN$\\n , where s is an even integer. Also, we characterize the scaling functions associated with \\n$\\\\Lambda _s$\\n -NUMRA and we give necessary and sufficient conditions for wavelet filters associated with \\n$\\\\Lambda _s$\\n -NUMRA.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S1446788721000203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788721000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

[摘要]Gabardo和Nashed['非均匀多分辨率分析和光谱对',J. Funct。Anal. 158(1)(1998), 209-241]基于谱对理论引入了非均匀多分辨率分析(NUMRA)的概念,其中相关的平移集$\Lambda =\{0,{r}/{N}\}+2\mathbb Z$不一定是$\mathbb{R}$的离散子群,平移因子为$2\textrm{N}$。这里r是一个奇数,带$1\leq r\leq 2N-1$使得r和N是相对素数。与NUMRA相关的非均匀小波可用于信号处理、采样理论、语音识别和其他各种需要非均匀移位代替整数移位的领域。为了进一步推广这个有用的NUMRA,我们考虑集合$\widetilde {\Lambda }=\{0,{r_1}/{N},{r_2}/{N},\ldots ,{r_q}/{N}\}+s\mathbb Z$,其中s是一个偶数,$q\in \mathbb {N}$, $r_i$是一个整数,使得$1\leq r_i\leq sN-1,\,(r_i,N)=1$对于所有i和$N\geq 2$。在本文中,我们证明了具有翻译集$\widetilde {\Lambda }$的NUMRA概念只有在$\widetilde {\Lambda }$的形式为$\{0,{r}/{N}\}+s\mathbb Z$时才可能存在。接下来我们引入$\Lambda _s$ -非均匀多分辨率分析($\Lambda _s$ -NUMRA),其中平移集为$\Lambda _s=\{0,{r}/{N}\}+s\mathbb Z$,膨胀因子为$sN$,其中s是一个偶数。同时,对$\Lambda _s$ -NUMRA相关的尺度函数进行了表征,给出了$\Lambda _s$ -NUMRA相关小波滤波器的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
$\Lambda _s$ -NONUNIFORM MULTIRESOLUTION ANALYSIS
Abstract Gabardo and Nashed [‘Nonuniform multiresolution analyses and spectral pairs’, J. Funct. Anal. 158(1) (1998), 209–241] have introduced the concept of nonuniform multiresolution analysis (NUMRA), based on the theory of spectral pairs, in which the associated translated set $\Lambda =\{0,{r}/{N}\}+2\mathbb Z$ is not necessarily a discrete subgroup of $\mathbb{R}$ , and the translation factor is $2\textrm{N}$ . Here r is an odd integer with $1\leq r\leq 2N-1$ such that r and N are relatively prime. The nonuniform wavelets associated with NUMRA can be used in signal processing, sampling theory, speech recognition and various other areas, where instead of integer shifts nonuniform shifts are needed. In order to further generalize this useful NUMRA, we consider the set $\widetilde {\Lambda }=\{0,{r_1}/{N},{r_2}/{N},\ldots ,{r_q}/{N}\}+s\mathbb Z$ , where s is an even integer, $q\in \mathbb {N}$ , $r_i$ is an integer such that $1\leq r_i\leq sN-1,\,(r_i,N)=1$ for all i and $N\geq 2$ . In this paper, we prove that the concept of NUMRA with the translation set $\widetilde {\Lambda }$ is possible only if $\widetilde {\Lambda }$ is of the form $\{0,{r}/{N}\}+s\mathbb Z$ . Next we introduce $\Lambda _s$ -nonuniform multiresolution analysis ( $\Lambda _s$ -NUMRA) for which the translation set is $\Lambda _s=\{0,{r}/{N}\}+s\mathbb Z$ and the dilation factor is $sN$ , where s is an even integer. Also, we characterize the scaling functions associated with $\Lambda _s$ -NUMRA and we give necessary and sufficient conditions for wavelet filters associated with $\Lambda _s$ -NUMRA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信