{"title":"包括人类行为在内的基于agent的地震危机模拟:在黎巴嫩贝鲁特市的应用","authors":"Rouba Iskandar, Julie Dugdale, Elise Beck, Cécile Cornou","doi":"10.1177/00375497231194608","DOIUrl":null,"url":null,"abstract":"Earthquake simulations at the urban scale usually focus on estimating the damages to the built environment and the consequent losses without fully taking into account human behavior in crisis. Yet, human behavior is a key element for improving crisis disaster management; therefore, it is important to include it in seismic crisis simulations. In this study, an agent-based model for the simulation of pedestrian evacuation during earthquakes at the city scale is developed following an interdisciplinary approach. The model recreates the urban conditions using Geographic Information System (GIS) and a synthetic population, in addition to the earthquake consequences on the urban fabric. Moreover, the model integrates realistic human behaviors calibrated using quantitative survey results. We simulate pedestrian outdoor mobility with the different constraints that affect it such as the topography and the presence of debris. The simulator is applied to the case of Beirut, Lebanon. A what-if approach is adopted to analyze the population’s safety in case of earthquakes in Beirut, particularly the open spaces’ capacity to provide shelters and the effect of debris and realistic human behaviors on people’s safety. The simulation results show that less than 40% of the population is able to arrive at an open space within 15 min after an earthquake. This number is further reduced when some open spaces are locked. Debris and realistic human behaviors significantly delay the arrivals to safe areas and, therefore, should not be neglected in earthquake simulations.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Agent-based simulation of seismic crisis including human behavior: application to the city of Beirut, Lebanon\",\"authors\":\"Rouba Iskandar, Julie Dugdale, Elise Beck, Cécile Cornou\",\"doi\":\"10.1177/00375497231194608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earthquake simulations at the urban scale usually focus on estimating the damages to the built environment and the consequent losses without fully taking into account human behavior in crisis. Yet, human behavior is a key element for improving crisis disaster management; therefore, it is important to include it in seismic crisis simulations. In this study, an agent-based model for the simulation of pedestrian evacuation during earthquakes at the city scale is developed following an interdisciplinary approach. The model recreates the urban conditions using Geographic Information System (GIS) and a synthetic population, in addition to the earthquake consequences on the urban fabric. Moreover, the model integrates realistic human behaviors calibrated using quantitative survey results. We simulate pedestrian outdoor mobility with the different constraints that affect it such as the topography and the presence of debris. The simulator is applied to the case of Beirut, Lebanon. A what-if approach is adopted to analyze the population’s safety in case of earthquakes in Beirut, particularly the open spaces’ capacity to provide shelters and the effect of debris and realistic human behaviors on people’s safety. The simulation results show that less than 40% of the population is able to arrive at an open space within 15 min after an earthquake. This number is further reduced when some open spaces are locked. Debris and realistic human behaviors significantly delay the arrivals to safe areas and, therefore, should not be neglected in earthquake simulations.\",\"PeriodicalId\":49516,\"journal\":{\"name\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/00375497231194608\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation-Transactions of the Society for Modeling and Simulation International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/00375497231194608","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Agent-based simulation of seismic crisis including human behavior: application to the city of Beirut, Lebanon
Earthquake simulations at the urban scale usually focus on estimating the damages to the built environment and the consequent losses without fully taking into account human behavior in crisis. Yet, human behavior is a key element for improving crisis disaster management; therefore, it is important to include it in seismic crisis simulations. In this study, an agent-based model for the simulation of pedestrian evacuation during earthquakes at the city scale is developed following an interdisciplinary approach. The model recreates the urban conditions using Geographic Information System (GIS) and a synthetic population, in addition to the earthquake consequences on the urban fabric. Moreover, the model integrates realistic human behaviors calibrated using quantitative survey results. We simulate pedestrian outdoor mobility with the different constraints that affect it such as the topography and the presence of debris. The simulator is applied to the case of Beirut, Lebanon. A what-if approach is adopted to analyze the population’s safety in case of earthquakes in Beirut, particularly the open spaces’ capacity to provide shelters and the effect of debris and realistic human behaviors on people’s safety. The simulation results show that less than 40% of the population is able to arrive at an open space within 15 min after an earthquake. This number is further reduced when some open spaces are locked. Debris and realistic human behaviors significantly delay the arrivals to safe areas and, therefore, should not be neglected in earthquake simulations.
期刊介绍:
SIMULATION is a peer-reviewed journal, which covers subjects including the modelling and simulation of: computer networking and communications, high performance computers, real-time systems, mobile and intelligent agents, simulation software, and language design, system engineering and design, aerospace, traffic systems, microelectronics, robotics, mechatronics, and air traffic and chemistry, physics, biology, medicine, biomedicine, sociology, and cognition.