{"title":"神经网络集成预测BIST100指数","authors":"Koray Beyaz, M. Efe","doi":"10.23919/ELECO47770.2019.8990659","DOIUrl":null,"url":null,"abstract":"This paper aims to provide a neural network-based approach to forecast the direction of movement of BIST 100 stock price index and investigates the difficulties of such an implementation. It is observed that a neural network implementation is highly sensitive to selection of features and optimization parameters such as learning rate. A methodology to overcome the difficulties of neural network implementations to financial time series is proposed in the paper. Several feature selection methods are employed to obtain a subset of the features that can be used in the training of any classification algorithm. The difficulties and benefits of using an ensemble of neural networks instead of a single neural network are also studied. Results have shown that the use of neural network ensembles yields promising results. Keywords: Neural Networks, Ensemble, Bagging, Forecast.","PeriodicalId":6611,"journal":{"name":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"42 1","pages":"940-944"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting BIST100 Index with Neural Network Ensembles\",\"authors\":\"Koray Beyaz, M. Efe\",\"doi\":\"10.23919/ELECO47770.2019.8990659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to provide a neural network-based approach to forecast the direction of movement of BIST 100 stock price index and investigates the difficulties of such an implementation. It is observed that a neural network implementation is highly sensitive to selection of features and optimization parameters such as learning rate. A methodology to overcome the difficulties of neural network implementations to financial time series is proposed in the paper. Several feature selection methods are employed to obtain a subset of the features that can be used in the training of any classification algorithm. The difficulties and benefits of using an ensemble of neural networks instead of a single neural network are also studied. Results have shown that the use of neural network ensembles yields promising results. Keywords: Neural Networks, Ensemble, Bagging, Forecast.\",\"PeriodicalId\":6611,\"journal\":{\"name\":\"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)\",\"volume\":\"42 1\",\"pages\":\"940-944\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ELECO47770.2019.8990659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELECO47770.2019.8990659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forecasting BIST100 Index with Neural Network Ensembles
This paper aims to provide a neural network-based approach to forecast the direction of movement of BIST 100 stock price index and investigates the difficulties of such an implementation. It is observed that a neural network implementation is highly sensitive to selection of features and optimization parameters such as learning rate. A methodology to overcome the difficulties of neural network implementations to financial time series is proposed in the paper. Several feature selection methods are employed to obtain a subset of the features that can be used in the training of any classification algorithm. The difficulties and benefits of using an ensemble of neural networks instead of a single neural network are also studied. Results have shown that the use of neural network ensembles yields promising results. Keywords: Neural Networks, Ensemble, Bagging, Forecast.