Andreas Pusch, M. Yoshida, N. P. Hylton, A. Mellor, Anthony Vaquero-Steiner, C. Phillips, O. Hess, N. Ekins‐Daukes
{"title":"光子棘轮在中间波段太阳能电池中的作用","authors":"Andreas Pusch, M. Yoshida, N. P. Hylton, A. Mellor, Anthony Vaquero-Steiner, C. Phillips, O. Hess, N. Ekins‐Daukes","doi":"10.1109/PVSC.2016.7749398","DOIUrl":null,"url":null,"abstract":"The intermediate band solar cell (IBSC) concept aims to improve upon the Shockley-Queisser limit for single bandgap solar cells by also making use of below bandgap photons through sequential absorption processes via an intermediate band (IB). In order for this concept to be translated into more efficient solar cells there are still challenges to overcome; one of the most important is the increased recombination (radiative as well as non-radiative) associated with the additional states in the bandgap. A proposal to mitigate those recombination losses is the introduction of a photon ratchet into the IBSC, which effectively trades some of the energy of the excited electrons against these recombination losses. We show here that this can lead to substantial improvements even in the radiative limiting efficiency, where no non-radiative recombination is taken into account and that this advantage is especially prominent for IBSCs in which the transitions into and out of the IB are not very absorptive, a case commonly encountered for current IBSC proposals.","PeriodicalId":6524,"journal":{"name":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","volume":"9 1","pages":"0009-0012"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The purpose of a photon ratchet in intermediate band solar cells\",\"authors\":\"Andreas Pusch, M. Yoshida, N. P. Hylton, A. Mellor, Anthony Vaquero-Steiner, C. Phillips, O. Hess, N. Ekins‐Daukes\",\"doi\":\"10.1109/PVSC.2016.7749398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intermediate band solar cell (IBSC) concept aims to improve upon the Shockley-Queisser limit for single bandgap solar cells by also making use of below bandgap photons through sequential absorption processes via an intermediate band (IB). In order for this concept to be translated into more efficient solar cells there are still challenges to overcome; one of the most important is the increased recombination (radiative as well as non-radiative) associated with the additional states in the bandgap. A proposal to mitigate those recombination losses is the introduction of a photon ratchet into the IBSC, which effectively trades some of the energy of the excited electrons against these recombination losses. We show here that this can lead to substantial improvements even in the radiative limiting efficiency, where no non-radiative recombination is taken into account and that this advantage is especially prominent for IBSCs in which the transitions into and out of the IB are not very absorptive, a case commonly encountered for current IBSC proposals.\",\"PeriodicalId\":6524,\"journal\":{\"name\":\"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"9 1\",\"pages\":\"0009-0012\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2016.7749398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2016.7749398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The purpose of a photon ratchet in intermediate band solar cells
The intermediate band solar cell (IBSC) concept aims to improve upon the Shockley-Queisser limit for single bandgap solar cells by also making use of below bandgap photons through sequential absorption processes via an intermediate band (IB). In order for this concept to be translated into more efficient solar cells there are still challenges to overcome; one of the most important is the increased recombination (radiative as well as non-radiative) associated with the additional states in the bandgap. A proposal to mitigate those recombination losses is the introduction of a photon ratchet into the IBSC, which effectively trades some of the energy of the excited electrons against these recombination losses. We show here that this can lead to substantial improvements even in the radiative limiting efficiency, where no non-radiative recombination is taken into account and that this advantage is especially prominent for IBSCs in which the transitions into and out of the IB are not very absorptive, a case commonly encountered for current IBSC proposals.