基于面部姿势一致性的面部匿名

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Junchang Wang
{"title":"基于面部姿势一致性的面部匿名","authors":"Junchang Wang","doi":"10.4018/ijdcf.302872","DOIUrl":null,"url":null,"abstract":"With the development of artificial intelligence, there are more and more applications related to face images. The recording of face information causes potential cyber security risks and personal privacy disclosure risks to the public. To solve this problem, we hope to protect face privacy through face anonymity. This paper designs a conditional autoencoder that uses the data preprocessing method of image inpainting. Based on the realistic generation ability of StyleGAN, our autoencoder model introduces facial pose information as conditional information. The input image only contains pre-processed face-removed images. Our method can generate high-resolution images and maintain the posture of the original face. It can be used for identity-independent computer vision tasks. Experiments further proves the effectiveness of our anonymization framework.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face Anonymity Based on Facial Pose Consistency\",\"authors\":\"Junchang Wang\",\"doi\":\"10.4018/ijdcf.302872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of artificial intelligence, there are more and more applications related to face images. The recording of face information causes potential cyber security risks and personal privacy disclosure risks to the public. To solve this problem, we hope to protect face privacy through face anonymity. This paper designs a conditional autoencoder that uses the data preprocessing method of image inpainting. Based on the realistic generation ability of StyleGAN, our autoencoder model introduces facial pose information as conditional information. The input image only contains pre-processed face-removed images. Our method can generate high-resolution images and maintain the posture of the original face. It can be used for identity-independent computer vision tasks. Experiments further proves the effectiveness of our anonymization framework.\",\"PeriodicalId\":44650,\"journal\":{\"name\":\"International Journal of Digital Crime and Forensics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Digital Crime and Forensics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdcf.302872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.302872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能的发展,与人脸图像相关的应用越来越多。人脸信息的记录会给公众带来潜在的网络安全风险和个人隐私泄露风险。为了解决这个问题,我们希望通过人脸匿名来保护人脸隐私。本文设计了一种采用图像绘制数据预处理方法的条件自编码器。基于StyleGAN的逼真生成能力,我们的自编码器模型将面部姿态信息作为条件信息引入。输入图像只包含经过预处理的去脸图像。我们的方法可以生成高分辨率的图像,并保持原始人脸的姿态。它可以用于独立于身份的计算机视觉任务。实验进一步证明了匿名化框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Anonymity Based on Facial Pose Consistency
With the development of artificial intelligence, there are more and more applications related to face images. The recording of face information causes potential cyber security risks and personal privacy disclosure risks to the public. To solve this problem, we hope to protect face privacy through face anonymity. This paper designs a conditional autoencoder that uses the data preprocessing method of image inpainting. Based on the realistic generation ability of StyleGAN, our autoencoder model introduces facial pose information as conditional information. The input image only contains pre-processed face-removed images. Our method can generate high-resolution images and maintain the posture of the original face. It can be used for identity-independent computer vision tasks. Experiments further proves the effectiveness of our anonymization framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信