利用统计特征检测糖尿病视网膜病变

A. Reethika, J. Sathish, P. Priya, F. D. Shadrach, M. S. Kanivarshini
{"title":"利用统计特征检测糖尿病视网膜病变","authors":"A. Reethika, J. Sathish, P. Priya, F. D. Shadrach, M. S. Kanivarshini","doi":"10.1109/iciptm54933.2022.9753932","DOIUrl":null,"url":null,"abstract":"Diabetic Retinopathy is a medical condition that occurs due to prolonged diabetes, ensuing in harmful to small blood vessels present in the retina, which in later stage leads to complete loss of vision. Moreover, this disease is asymptomatic at its earlier stages and hence, constant screening and precise diagnosis of Diabetic Retinopathy is required. Fundus image analysis proves to be an indispensable tool for the diagnosis of patients. This Paper focuses on using a neural network algorithm aimed to diagnosis of the disease by extracting the key features in the retinal fundus images are lesions, hemorrhages, exudates then the statistical parameters which henceforth help in the classification. This algorithm proves to achieve better accuracy than the traditional unsupervised classification algorithms.","PeriodicalId":6810,"journal":{"name":"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)","volume":"65 1","pages":"44-48"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Diabetic Retinopathy Detection Using Statistical Features\",\"authors\":\"A. Reethika, J. Sathish, P. Priya, F. D. Shadrach, M. S. Kanivarshini\",\"doi\":\"10.1109/iciptm54933.2022.9753932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic Retinopathy is a medical condition that occurs due to prolonged diabetes, ensuing in harmful to small blood vessels present in the retina, which in later stage leads to complete loss of vision. Moreover, this disease is asymptomatic at its earlier stages and hence, constant screening and precise diagnosis of Diabetic Retinopathy is required. Fundus image analysis proves to be an indispensable tool for the diagnosis of patients. This Paper focuses on using a neural network algorithm aimed to diagnosis of the disease by extracting the key features in the retinal fundus images are lesions, hemorrhages, exudates then the statistical parameters which henceforth help in the classification. This algorithm proves to achieve better accuracy than the traditional unsupervised classification algorithms.\",\"PeriodicalId\":6810,\"journal\":{\"name\":\"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"volume\":\"65 1\",\"pages\":\"44-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iciptm54933.2022.9753932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iciptm54933.2022.9753932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

糖尿病性视网膜病变是由于长期糖尿病而发生的一种医学病症,随后对视网膜中的小血管有害,晚期导致完全丧失视力。此外,这种疾病在早期阶段是无症状的,因此需要不断筛查和精确诊断糖尿病视网膜病变。眼底图像分析已被证明是诊断患者不可缺少的工具。本文主要利用神经网络算法提取视网膜眼底图像中的病变、出血、渗出等关键特征,进而提取出有助于分类的统计参数,对视网膜眼底病变进行诊断。与传统的无监督分类算法相比,该算法具有更好的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diabetic Retinopathy Detection Using Statistical Features
Diabetic Retinopathy is a medical condition that occurs due to prolonged diabetes, ensuing in harmful to small blood vessels present in the retina, which in later stage leads to complete loss of vision. Moreover, this disease is asymptomatic at its earlier stages and hence, constant screening and precise diagnosis of Diabetic Retinopathy is required. Fundus image analysis proves to be an indispensable tool for the diagnosis of patients. This Paper focuses on using a neural network algorithm aimed to diagnosis of the disease by extracting the key features in the retinal fundus images are lesions, hemorrhages, exudates then the statistical parameters which henceforth help in the classification. This algorithm proves to achieve better accuracy than the traditional unsupervised classification algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信