{"title":"基于精度几何稀释的超宽带室内定位系统锚点选择","authors":"Abbas Albaidhani, Ahlam Alsudani","doi":"10.1049/wss2.12006","DOIUrl":null,"url":null,"abstract":"<p>In wireless localization systems, the performance enhancement of location estimation is an important goal. In recent years, different positioning systems using an ultra-wide band (UWB) technology have been created, and always an evaluation metric to test such systems is needed for ensuring a suitable system for a specified application. Also, a non-line-of-sight (NLOS) identification and mitigation method is needed usually when utilizing the UWB technology. The mean-square-error (MSE) and geometric dilution of precision (GDOP) evaluation metrics are widely implemented as standard for choosing a perfect system. In a harsh environment, a novel algorithm of indoor positioning (IP) system is presented using the UWB technology without implementing any NLOS identification and mitigation technique and the localization accuracy is evaluated online. The UWB is used to communicate a mobile station (M) with <i>n</i> anchor nodes distributed randomly and clustered by utilizing a combination method to create different groups, and then a conventional linearized least square (LLS) method is utilized by each group for locating <i>M</i>. A weighted GDOP metric is implemented online to assess the positioning accuracy of each group. Then, the group having the lowest positioning error among other groups is selected to relocate <i>M</i> using a proposed LLS, named modified LLS, for the selected group to enhance the positioning accuracy. The created system outperforms different IP systems in the market for the last decade in terms of time, complexity, and accuracy. The created IP system has a positioning error around 25 cm<sup>2</sup> of MSE in a hard environment, which is less than those of different IP systems created recently in the market.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12006","citationCount":"12","resultStr":"{\"title\":\"Anchor selection by geometric dilution of precision for an indoor positioning system using ultra-wide band technology\",\"authors\":\"Abbas Albaidhani, Ahlam Alsudani\",\"doi\":\"10.1049/wss2.12006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In wireless localization systems, the performance enhancement of location estimation is an important goal. In recent years, different positioning systems using an ultra-wide band (UWB) technology have been created, and always an evaluation metric to test such systems is needed for ensuring a suitable system for a specified application. Also, a non-line-of-sight (NLOS) identification and mitigation method is needed usually when utilizing the UWB technology. The mean-square-error (MSE) and geometric dilution of precision (GDOP) evaluation metrics are widely implemented as standard for choosing a perfect system. In a harsh environment, a novel algorithm of indoor positioning (IP) system is presented using the UWB technology without implementing any NLOS identification and mitigation technique and the localization accuracy is evaluated online. The UWB is used to communicate a mobile station (M) with <i>n</i> anchor nodes distributed randomly and clustered by utilizing a combination method to create different groups, and then a conventional linearized least square (LLS) method is utilized by each group for locating <i>M</i>. A weighted GDOP metric is implemented online to assess the positioning accuracy of each group. Then, the group having the lowest positioning error among other groups is selected to relocate <i>M</i> using a proposed LLS, named modified LLS, for the selected group to enhance the positioning accuracy. The created system outperforms different IP systems in the market for the last decade in terms of time, complexity, and accuracy. The created IP system has a positioning error around 25 cm<sup>2</sup> of MSE in a hard environment, which is less than those of different IP systems created recently in the market.</p>\",\"PeriodicalId\":51726,\"journal\":{\"name\":\"IET Wireless Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.12006\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Wireless Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.12006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Anchor selection by geometric dilution of precision for an indoor positioning system using ultra-wide band technology
In wireless localization systems, the performance enhancement of location estimation is an important goal. In recent years, different positioning systems using an ultra-wide band (UWB) technology have been created, and always an evaluation metric to test such systems is needed for ensuring a suitable system for a specified application. Also, a non-line-of-sight (NLOS) identification and mitigation method is needed usually when utilizing the UWB technology. The mean-square-error (MSE) and geometric dilution of precision (GDOP) evaluation metrics are widely implemented as standard for choosing a perfect system. In a harsh environment, a novel algorithm of indoor positioning (IP) system is presented using the UWB technology without implementing any NLOS identification and mitigation technique and the localization accuracy is evaluated online. The UWB is used to communicate a mobile station (M) with n anchor nodes distributed randomly and clustered by utilizing a combination method to create different groups, and then a conventional linearized least square (LLS) method is utilized by each group for locating M. A weighted GDOP metric is implemented online to assess the positioning accuracy of each group. Then, the group having the lowest positioning error among other groups is selected to relocate M using a proposed LLS, named modified LLS, for the selected group to enhance the positioning accuracy. The created system outperforms different IP systems in the market for the last decade in terms of time, complexity, and accuracy. The created IP system has a positioning error around 25 cm2 of MSE in a hard environment, which is less than those of different IP systems created recently in the market.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.