用应变计测量SAC305焊点在不同热循环条件下的实验应变能密度

J. Libot, F. Dulondel, P. Milesi, J. Alexis, L. Arnaud, O. Dalverny
{"title":"用应变计测量SAC305焊点在不同热循环条件下的实验应变能密度","authors":"J. Libot, F. Dulondel, P. Milesi, J. Alexis, L. Arnaud, O. Dalverny","doi":"10.1109/ECTC.2018.00116","DOIUrl":null,"url":null,"abstract":"Despite being widely investigated for the last two decades, solder joints thermomechanical durability assessment remains a major concern for industries wishing to switch from lead-based (SnPb) to lead-free electronics. Amongst the variety of lead-free solder compositions, 96.5Sn-3.0Ag-0.5Cu (SAC305) solder alloy has become the preferred substitute to classic SnPb solders. However, unlike SnPb assemblies, the return on experience is limited and the microstructure is very different for SAC305 solder joints. The use of SAC305 solder paste requires to understand the mechanical and fatigue behaviors of the soldered interconnects. This paper presents the experimentation based on strain gages measurements, allowing the determination of the shear stress-strain response of SAC305 solder joints subjected to different thermal cycling conditions. The area of the experimental shear strain-stress hysteresis loops gives the values of the strain energy density corresponding to each thermomechanical loading. The finite element modeling of the test assembly showed a good correlation between experimental and numerical strain energy densities. The experimental shear strain-stress curves also provide the necessary data to derive SAC305 solder joints constitutive laws.","PeriodicalId":6555,"journal":{"name":"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)","volume":"1 1","pages":"748-755"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Experimental Strain Energy Density Dissipated in SAC305 Solder Joints During Different Thermal Cycling Conditions Using Strain Gages Measurements\",\"authors\":\"J. Libot, F. Dulondel, P. Milesi, J. Alexis, L. Arnaud, O. Dalverny\",\"doi\":\"10.1109/ECTC.2018.00116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite being widely investigated for the last two decades, solder joints thermomechanical durability assessment remains a major concern for industries wishing to switch from lead-based (SnPb) to lead-free electronics. Amongst the variety of lead-free solder compositions, 96.5Sn-3.0Ag-0.5Cu (SAC305) solder alloy has become the preferred substitute to classic SnPb solders. However, unlike SnPb assemblies, the return on experience is limited and the microstructure is very different for SAC305 solder joints. The use of SAC305 solder paste requires to understand the mechanical and fatigue behaviors of the soldered interconnects. This paper presents the experimentation based on strain gages measurements, allowing the determination of the shear stress-strain response of SAC305 solder joints subjected to different thermal cycling conditions. The area of the experimental shear strain-stress hysteresis loops gives the values of the strain energy density corresponding to each thermomechanical loading. The finite element modeling of the test assembly showed a good correlation between experimental and numerical strain energy densities. The experimental shear strain-stress curves also provide the necessary data to derive SAC305 solder joints constitutive laws.\",\"PeriodicalId\":6555,\"journal\":{\"name\":\"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"1 1\",\"pages\":\"748-755\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2018.00116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2018.00116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

尽管在过去的二十年中进行了广泛的研究,但对于希望从铅基(SnPb)转向无铅电子产品的行业来说,焊点的热机械耐久性评估仍然是一个主要问题。在各种无铅焊料成分中,96.5Sn-3.0Ag-0.5Cu (SAC305)钎料合金已成为经典SnPb钎料的首选替代品。然而,与SnPb组件不同,经验回报有限,SAC305焊点的微观结构也非常不同。使用SAC305焊膏需要了解焊接互连的机械和疲劳行为。本文介绍了基于应变片测量的实验,可以确定SAC305焊点在不同热循环条件下的剪切应力-应变响应。实验剪切应变-应力滞回线的面积给出了对应于每种热机械载荷的应变能密度值。试验装置的有限元模拟表明,试验应变能密度与数值应变能密度具有良好的相关性。实验得到的剪切应变-应力曲线也为SAC305焊点本构规律的推导提供了必要的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Strain Energy Density Dissipated in SAC305 Solder Joints During Different Thermal Cycling Conditions Using Strain Gages Measurements
Despite being widely investigated for the last two decades, solder joints thermomechanical durability assessment remains a major concern for industries wishing to switch from lead-based (SnPb) to lead-free electronics. Amongst the variety of lead-free solder compositions, 96.5Sn-3.0Ag-0.5Cu (SAC305) solder alloy has become the preferred substitute to classic SnPb solders. However, unlike SnPb assemblies, the return on experience is limited and the microstructure is very different for SAC305 solder joints. The use of SAC305 solder paste requires to understand the mechanical and fatigue behaviors of the soldered interconnects. This paper presents the experimentation based on strain gages measurements, allowing the determination of the shear stress-strain response of SAC305 solder joints subjected to different thermal cycling conditions. The area of the experimental shear strain-stress hysteresis loops gives the values of the strain energy density corresponding to each thermomechanical loading. The finite element modeling of the test assembly showed a good correlation between experimental and numerical strain energy densities. The experimental shear strain-stress curves also provide the necessary data to derive SAC305 solder joints constitutive laws.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信