S. S. Zhou, C. Wilde, Zheng Chen, Tanya Kapes, JenniferPurgill, R. Nims, D. Suchmann
{"title":"脊髓灰质炎病毒和腺病毒的载体和液体热灭活","authors":"S. S. Zhou, C. Wilde, Zheng Chen, Tanya Kapes, JenniferPurgill, R. Nims, D. Suchmann","doi":"10.5772/INTECHOPEN.76340","DOIUrl":null,"url":null,"abstract":"Viral inactivation is typically studied using virus suspended in liquid (liquid inactivation) or virus deposited on surfaces (carrier inactivation). Carrier inactivation more closely mimics disinfection of virus contaminating a surface, while liquid inactivation mimics virus inactiva- tion in process solutions. The prevailing opinion has been that viruses are more susceptible to heat inactivation when suspended in liquid than when deposited on surfaces. In part, this reflects a paucity of comparative studies performed in a side-by-side manner. In the present study, we investigated the relative susceptibilities of the enteroviruses poliovirus-1 and adenovirus type 5 to heat inactivation in liquid versus carrier studies. The results of our side-by-side studies suggest that these two viruses are more readily inactivated when heat is applied to virus deposited on carriers. Decimal reduction values (i.e., the amount of time required to reduce the virus titer by one log 10 ) measured at 46°C displayed the greatest dif- ference between carrier and liquid inactivation approaches, with values ranging from 14.0 to 15.2 min (carrier) and from 47.4 to 64.1 min (liquid) for poliovirus. The corresponding values for adenovirus 5 were 18.2–29.2 min (carrier) and 20.8–38.3 min (liquid). At 65°C, the decimal reduction values were more similar (from 4 to 6 min) for the various inactivation approaches.","PeriodicalId":11317,"journal":{"name":"Disinfection affairs","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Carrier and Liquid Heat Inactivation of Poliovirus and Adenovirus\",\"authors\":\"S. S. Zhou, C. Wilde, Zheng Chen, Tanya Kapes, JenniferPurgill, R. Nims, D. Suchmann\",\"doi\":\"10.5772/INTECHOPEN.76340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viral inactivation is typically studied using virus suspended in liquid (liquid inactivation) or virus deposited on surfaces (carrier inactivation). Carrier inactivation more closely mimics disinfection of virus contaminating a surface, while liquid inactivation mimics virus inactiva- tion in process solutions. The prevailing opinion has been that viruses are more susceptible to heat inactivation when suspended in liquid than when deposited on surfaces. In part, this reflects a paucity of comparative studies performed in a side-by-side manner. In the present study, we investigated the relative susceptibilities of the enteroviruses poliovirus-1 and adenovirus type 5 to heat inactivation in liquid versus carrier studies. The results of our side-by-side studies suggest that these two viruses are more readily inactivated when heat is applied to virus deposited on carriers. Decimal reduction values (i.e., the amount of time required to reduce the virus titer by one log 10 ) measured at 46°C displayed the greatest dif- ference between carrier and liquid inactivation approaches, with values ranging from 14.0 to 15.2 min (carrier) and from 47.4 to 64.1 min (liquid) for poliovirus. The corresponding values for adenovirus 5 were 18.2–29.2 min (carrier) and 20.8–38.3 min (liquid). At 65°C, the decimal reduction values were more similar (from 4 to 6 min) for the various inactivation approaches.\",\"PeriodicalId\":11317,\"journal\":{\"name\":\"Disinfection affairs\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disinfection affairs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.76340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disinfection affairs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carrier and Liquid Heat Inactivation of Poliovirus and Adenovirus
Viral inactivation is typically studied using virus suspended in liquid (liquid inactivation) or virus deposited on surfaces (carrier inactivation). Carrier inactivation more closely mimics disinfection of virus contaminating a surface, while liquid inactivation mimics virus inactiva- tion in process solutions. The prevailing opinion has been that viruses are more susceptible to heat inactivation when suspended in liquid than when deposited on surfaces. In part, this reflects a paucity of comparative studies performed in a side-by-side manner. In the present study, we investigated the relative susceptibilities of the enteroviruses poliovirus-1 and adenovirus type 5 to heat inactivation in liquid versus carrier studies. The results of our side-by-side studies suggest that these two viruses are more readily inactivated when heat is applied to virus deposited on carriers. Decimal reduction values (i.e., the amount of time required to reduce the virus titer by one log 10 ) measured at 46°C displayed the greatest dif- ference between carrier and liquid inactivation approaches, with values ranging from 14.0 to 15.2 min (carrier) and from 47.4 to 64.1 min (liquid) for poliovirus. The corresponding values for adenovirus 5 were 18.2–29.2 min (carrier) and 20.8–38.3 min (liquid). At 65°C, the decimal reduction values were more similar (from 4 to 6 min) for the various inactivation approaches.