Chaohai Wang, Tao Zheng, Rui Luo, Chao Liu, Ming Zhang, Jiansheng Li*, Xiuyun Sun, Jinyou Shen, Weiqing Han, Lianjun Wang*
{"title":"在PAN纤维过滤器上原位生长ZIF-8高效去除U(VI","authors":"Chaohai Wang, Tao Zheng, Rui Luo, Chao Liu, Ming Zhang, Jiansheng Li*, Xiuyun Sun, Jinyou Shen, Weiqing Han, Lianjun Wang*","doi":"10.1021/acsami.8b07826","DOIUrl":null,"url":null,"abstract":"<p >Global environmental challenges especially nuclear pollution pose a great threat to human health and public safety. Metal–organic frameworks (MOFs) with high surface area and excellent stability are potential candidates for the remediation of nuclear pollution. Herein, a ZIF-8-based polyacrylonitrile (PAN) fibrous filter was prepared by an in situ hydrothermal treatment of fibrous filters consisting of PAN, poly(vinylpyrrolidone) (PVP), and zinc ions with an electrospinning method. In the process of hydrothermal treatment, PVP can be extracted from the PAN nanofibers and result in porous structures. Benefiting from these porous structures, the in situ ZIF-8/PAN filters demonstrated a high adsorption capacity of U(VI) (530.3 mg g<sup>–1</sup> at pH = 3.0). The extended X-ray absorption fine structure revealed that the adsorption mechanism demonstrated surface complexation between U(VI) and 2-methylimidazole. Furthermore, the adsorption device was fabricated, and the dynamic adsorption shows that in situ ZIF-8/PAN is a promising material for treating the nuclear wastewater. The present work may provide a new strategy to fabricate MOFs into functional devices to remediate the increasing global environmental concerns.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"10 28","pages":"24164–24171"},"PeriodicalIF":8.2000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acsami.8b07826","citationCount":"151","resultStr":"{\"title\":\"In Situ Growth of ZIF-8 on PAN Fibrous Filters for Highly Efficient U(VI) Removal\",\"authors\":\"Chaohai Wang, Tao Zheng, Rui Luo, Chao Liu, Ming Zhang, Jiansheng Li*, Xiuyun Sun, Jinyou Shen, Weiqing Han, Lianjun Wang*\",\"doi\":\"10.1021/acsami.8b07826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Global environmental challenges especially nuclear pollution pose a great threat to human health and public safety. Metal–organic frameworks (MOFs) with high surface area and excellent stability are potential candidates for the remediation of nuclear pollution. Herein, a ZIF-8-based polyacrylonitrile (PAN) fibrous filter was prepared by an in situ hydrothermal treatment of fibrous filters consisting of PAN, poly(vinylpyrrolidone) (PVP), and zinc ions with an electrospinning method. In the process of hydrothermal treatment, PVP can be extracted from the PAN nanofibers and result in porous structures. Benefiting from these porous structures, the in situ ZIF-8/PAN filters demonstrated a high adsorption capacity of U(VI) (530.3 mg g<sup>–1</sup> at pH = 3.0). The extended X-ray absorption fine structure revealed that the adsorption mechanism demonstrated surface complexation between U(VI) and 2-methylimidazole. Furthermore, the adsorption device was fabricated, and the dynamic adsorption shows that in situ ZIF-8/PAN is a promising material for treating the nuclear wastewater. The present work may provide a new strategy to fabricate MOFs into functional devices to remediate the increasing global environmental concerns.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"10 28\",\"pages\":\"24164–24171\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acsami.8b07826\",\"citationCount\":\"151\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.8b07826\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.8b07826","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
In Situ Growth of ZIF-8 on PAN Fibrous Filters for Highly Efficient U(VI) Removal
Global environmental challenges especially nuclear pollution pose a great threat to human health and public safety. Metal–organic frameworks (MOFs) with high surface area and excellent stability are potential candidates for the remediation of nuclear pollution. Herein, a ZIF-8-based polyacrylonitrile (PAN) fibrous filter was prepared by an in situ hydrothermal treatment of fibrous filters consisting of PAN, poly(vinylpyrrolidone) (PVP), and zinc ions with an electrospinning method. In the process of hydrothermal treatment, PVP can be extracted from the PAN nanofibers and result in porous structures. Benefiting from these porous structures, the in situ ZIF-8/PAN filters demonstrated a high adsorption capacity of U(VI) (530.3 mg g–1 at pH = 3.0). The extended X-ray absorption fine structure revealed that the adsorption mechanism demonstrated surface complexation between U(VI) and 2-methylimidazole. Furthermore, the adsorption device was fabricated, and the dynamic adsorption shows that in situ ZIF-8/PAN is a promising material for treating the nuclear wastewater. The present work may provide a new strategy to fabricate MOFs into functional devices to remediate the increasing global environmental concerns.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.