FDM零件蒸气处理工艺表面改善的实验研究

Q3 Engineering
Mayank Prajapati, Sandeep Rimza
{"title":"FDM零件蒸气处理工艺表面改善的实验研究","authors":"Mayank Prajapati, Sandeep Rimza","doi":"10.30564/jmer.v3i1.1681","DOIUrl":null,"url":null,"abstract":"Fused deposition modeling (FDM) is one of the most adaptable additive manufacturing method owing to the cost-effectiveness and environment-friendly nature. However, FDM technique still possesses major difficulties in terms of poor surface quality because of adding layer by layer manufacturing process for the prototypes. It is desirable to explore an efficient technique for FDM parts to enhance the poor surface quality and dimensions precision. In the present paper, an effort has been made to enhance the surface quality and optimize the critical processing parameter of FDM based benchmark using vapor smoothing process (VSP). A comparative experimental study has been performed by design of experiments (DOE), Taguchi technique to find the influence of input design parameters on the surface finish of benchmark FDM parts. The results of the present investigation show that VSP treatment improves the surface quality of FDM parts to micro level with negligible dimensional variation. It is observed that improved surface quality is found in the 1,2, -Dichloroethane chemical at 90° part build orientation, 0.25 mm layer thickness, 10% fill density and 90 second exposure times.","PeriodicalId":16153,"journal":{"name":"Journal of Mechanical Engineering Research and Developments","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Study of Surface Improvement in FDM Parts by Vapor Treatment Process\",\"authors\":\"Mayank Prajapati, Sandeep Rimza\",\"doi\":\"10.30564/jmer.v3i1.1681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fused deposition modeling (FDM) is one of the most adaptable additive manufacturing method owing to the cost-effectiveness and environment-friendly nature. However, FDM technique still possesses major difficulties in terms of poor surface quality because of adding layer by layer manufacturing process for the prototypes. It is desirable to explore an efficient technique for FDM parts to enhance the poor surface quality and dimensions precision. In the present paper, an effort has been made to enhance the surface quality and optimize the critical processing parameter of FDM based benchmark using vapor smoothing process (VSP). A comparative experimental study has been performed by design of experiments (DOE), Taguchi technique to find the influence of input design parameters on the surface finish of benchmark FDM parts. The results of the present investigation show that VSP treatment improves the surface quality of FDM parts to micro level with negligible dimensional variation. It is observed that improved surface quality is found in the 1,2, -Dichloroethane chemical at 90° part build orientation, 0.25 mm layer thickness, 10% fill density and 90 second exposure times.\",\"PeriodicalId\":16153,\"journal\":{\"name\":\"Journal of Mechanical Engineering Research and Developments\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering Research and Developments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/jmer.v3i1.1681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Research and Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/jmer.v3i1.1681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

熔融沉积建模(FDM)因其成本效益和环境友好性而成为适应性最强的增材制造方法之一。然而,FDM技术仍然存在很大的困难,因为在原型中增加了一层一层的制造过程,导致表面质量差。探索一种有效的FDM零件加工工艺,以提高零件的表面质量和尺寸精度。本文采用蒸汽平滑工艺(VSP)提高了FDM基准的表面质量,优化了基准的关键加工参数。采用实验设计法(DOE)和田口法(Taguchi technology)进行了对比实验研究,找出了输入设计参数对基准FDM零件表面光洁度的影响。研究结果表明,VSP处理将FDM零件的表面质量提高到微观水平,尺寸变化可以忽略不计。在90°部分构建方向、0.25 mm层厚、10%填充密度和90 s曝光时间下,1,2,-二氯乙烷化学品的表面质量得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Study of Surface Improvement in FDM Parts by Vapor Treatment Process
Fused deposition modeling (FDM) is one of the most adaptable additive manufacturing method owing to the cost-effectiveness and environment-friendly nature. However, FDM technique still possesses major difficulties in terms of poor surface quality because of adding layer by layer manufacturing process for the prototypes. It is desirable to explore an efficient technique for FDM parts to enhance the poor surface quality and dimensions precision. In the present paper, an effort has been made to enhance the surface quality and optimize the critical processing parameter of FDM based benchmark using vapor smoothing process (VSP). A comparative experimental study has been performed by design of experiments (DOE), Taguchi technique to find the influence of input design parameters on the surface finish of benchmark FDM parts. The results of the present investigation show that VSP treatment improves the surface quality of FDM parts to micro level with negligible dimensional variation. It is observed that improved surface quality is found in the 1,2, -Dichloroethane chemical at 90° part build orientation, 0.25 mm layer thickness, 10% fill density and 90 second exposure times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: The scopes of the journal include, but are not limited to, the following topics: • Thermal Engineering and Fluids Engineering • Mechanics • Kinematics, Dynamics, & Control of Mechanical Systems • Mechatronics, Robotics and Automation • Design, Manufacturing, & Product Development • Human and Machine Haptics Specific topics of interest include: Advanced Manufacturing Technology, Analysis and Decision of Industry & Manufacturing System, Applied Mechanics, Biomechanics, CAD/CAM Integration Technology, Complex Curve Design, Manufacturing & Application, Computational Mechanics, Computer-aided Geometric Design & Simulation, Fluid Dynamics, Fluid Mechanics, General mechanics, Geomechanics, Industrial Application of CAD, Machinery and Machine Design, Machine Vision and Learning, Material Science and Processing, Mechanical Power Engineering, Mechatronics and Robotics, Artificial Intelligence, PC Guided Design and Manufacture, Precision Manufacturing & Measurement, Precision Mechanics, Production Technology, Quality & Reliability Engineering, Renewable Energy Technologies, Science and Engineering Computing, Solid Mechanics, Structural Dynamics, System Dynamics and Simulation, Systems Science and Systems Engineering, Vehicle Dynamic Performance Simulation, Virtual-tech Based System & Process-simulation, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信