基于半加性工艺的非均匀集成亚微米尺度Cu RDL图案

T. Takano, H. Kudo, Masaya Tanaka, M. Akazawa
{"title":"基于半加性工艺的非均匀集成亚微米尺度Cu RDL图案","authors":"T. Takano, H. Kudo, Masaya Tanaka, M. Akazawa","doi":"10.1109/ECTC.2019.00022","DOIUrl":null,"url":null,"abstract":"Use of dry plasma etching rather than wet etching of a Cu-seed layer in a semi-additive process enabled more precise dimension controllability in the patterning of submicron-scale Cu traces due to no shift in the width of the traces. This controllability is comparable to that of competitive fabrication technologies such as that for damascene-based Cu redistribution layers. The dry etching enabled the patterning of Cu traces with an aspect ratio as high as 4.2 (L/S=0.7/0.7 µm, 3.0 µm in height) without any failures such as electrical shorts between traces. Simulation showed that an increase in the aspect ratio effectively reduced signal transmission loss due to a reduction in conductor loss. The dry etching provided very smooth surfaces on the Cu-trace side-wall (roughness as low as 0.05 µm). This further reduced the signal transmission loss compared to that of wet-etched Cu traces. Submicron-scale patterning of Cu traces using dry etching enables flexible design of redistribution layer lines in terms of signal integrity, in addition to increasing the number of signal I/Os cost effectively.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"2 1","pages":"94-100"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Submicron-Scale Cu RDL Pattering Based on Semi-Additive Process for Heterogeneous Integration\",\"authors\":\"T. Takano, H. Kudo, Masaya Tanaka, M. Akazawa\",\"doi\":\"10.1109/ECTC.2019.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Use of dry plasma etching rather than wet etching of a Cu-seed layer in a semi-additive process enabled more precise dimension controllability in the patterning of submicron-scale Cu traces due to no shift in the width of the traces. This controllability is comparable to that of competitive fabrication technologies such as that for damascene-based Cu redistribution layers. The dry etching enabled the patterning of Cu traces with an aspect ratio as high as 4.2 (L/S=0.7/0.7 µm, 3.0 µm in height) without any failures such as electrical shorts between traces. Simulation showed that an increase in the aspect ratio effectively reduced signal transmission loss due to a reduction in conductor loss. The dry etching provided very smooth surfaces on the Cu-trace side-wall (roughness as low as 0.05 µm). This further reduced the signal transmission loss compared to that of wet-etched Cu traces. Submicron-scale patterning of Cu traces using dry etching enables flexible design of redistribution layer lines in terms of signal integrity, in addition to increasing the number of signal I/Os cost effectively.\",\"PeriodicalId\":6726,\"journal\":{\"name\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"2 1\",\"pages\":\"94-100\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2019.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在半加性工艺中,使用干等离子体蚀刻而不是湿法蚀刻铜籽层,可以在亚微米尺度的铜迹的图案中实现更精确的尺寸可控性,因为迹的宽度没有变化。这种可控性可与竞争性制造技术相媲美,例如基于大马士革的Cu重分配层。干式蚀刻使铜走线的纵横比高达4.2 (L/S=0.7/0.7µm,高度3.0µm),没有任何故障,如走线之间的电短路。仿真结果表明,宽高比的增加可以有效地降低信号传输损耗,因为导体损耗降低了。干蚀刻在cu痕量侧壁上提供了非常光滑的表面(粗糙度低至0.05µm)。与湿蚀铜走线相比,这进一步降低了信号传输损耗。使用干蚀刻的亚微米尺度的Cu走线图图化,除了可以有效地增加信号I/ o的数量外,还可以在信号完整性方面灵活地设计再分配层线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Submicron-Scale Cu RDL Pattering Based on Semi-Additive Process for Heterogeneous Integration
Use of dry plasma etching rather than wet etching of a Cu-seed layer in a semi-additive process enabled more precise dimension controllability in the patterning of submicron-scale Cu traces due to no shift in the width of the traces. This controllability is comparable to that of competitive fabrication technologies such as that for damascene-based Cu redistribution layers. The dry etching enabled the patterning of Cu traces with an aspect ratio as high as 4.2 (L/S=0.7/0.7 µm, 3.0 µm in height) without any failures such as electrical shorts between traces. Simulation showed that an increase in the aspect ratio effectively reduced signal transmission loss due to a reduction in conductor loss. The dry etching provided very smooth surfaces on the Cu-trace side-wall (roughness as low as 0.05 µm). This further reduced the signal transmission loss compared to that of wet-etched Cu traces. Submicron-scale patterning of Cu traces using dry etching enables flexible design of redistribution layer lines in terms of signal integrity, in addition to increasing the number of signal I/Os cost effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信