放射性标记方法和核成像技术在癌症治疗新聚合物载体设计中的应用

R. D. Kruijff, A. Arranja, A. Denkova
{"title":"放射性标记方法和核成像技术在癌症治疗新聚合物载体设计中的应用","authors":"R. D. Kruijff, A. Arranja, A. Denkova","doi":"10.2174/2452271602666180102150733","DOIUrl":null,"url":null,"abstract":"P3-10-04: A open-label, randomized, parallel, phase III trial to evaluate the efficacy and safety of Genexol ® -PM compared to Genexol ® (conventional paclitaxel with cremorphor EL) in recurrent or metastatic breast cancer patients. Cancer Research 2015; 75 (9 Supplement): P3-10-04-P3-10-04. Varela-Moreira A, Shi Y, Fens MH, Lammers T, Hennink WE, [17] Schiffelers RM. Clinical application of polymeric micelles for the Radiolabeling Methods and Nuclear Imaging Techniques Current Applied Polymer Science, 2018, Vol. 2, No. 1 15 treatment of cancer. Materials Chemistry Frontiers 2017; 1(8): 1485-501. Subbiah V, Combest A, Griley-Olsen J, Sharma N, Andrews E, [18] Bobe I, et al. Phase Ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine (G) in pts with advanced solid tumors. Ann Oncol 2016; 27(suppl_6): 398P-P. Saeki T, Mukai H, Ro J, et al. 250PA Global phase III clinical [19] study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Ann Oncol 2017; 28(suppl_5): mdx365.013-. Von Hoff DD, Mita MM, Ramanathan RK, et al. Phase I study of [20] PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res 2016; 22(13): 3157-63. Hu Q, Rijcken CJ, Bansal R, Hennink WE, Storm G, Prakash J. [21] Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. Biomaterials 2015; 53: 370-8. Burris HA, Wang JS-Z, Johnson ML, Falchook GS, Jones SF, [22] Strickland DK, et al. A phase I, open-label, first-time-in-patient dose escalation and expansion study to assess the safety, tolerability, and pharmacokinetics of nanoparticle encapsulated Aurora B kinase inhibitor AZD2811 in patients with advanced solid tumours. J Clin Oncol 2017; 15_suppl: TPS2608-. Smits ML, Nijsen JF, van den Bosch MA, et al. Holmium-166 [23] radioembolization for the treatment of patients with liver metastases: Design of the phase I HEPAR trial. J Exp Clin Cancer Res 2010; 29(1): 70. Smits ML, Nijsen JF, van den Bosch MA, et al. Holmium-166 [24] radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): A phase 1, dose-escalation study. Lancet Oncol 2012; 13(10): 1025-34. Feasibility of Holmium-166 Micro Brachytherapy in Head and [25] Neck Tumors (HIT) 2016 [Available from: https: //clinicaltrials.gov/ct2/show/NCT02975739]. Holmium-166-radioembolization in NET After Lutetium-177[26] dotatate: An Efficacy Study (HEPAR_Plus) 2016 [Available from: https: //clinicaltrials.gov/ct2/show/NCT02067988]. Eppard E, Allmeroth M, Zentel R, Roesch F. Labeling of HPMA[27] based, functionalized polymer-systems using metallic radionuclides. J Nucl Med 2013; 54 (Suppl. 2): 501. Yuan J, Zhang H, Kaur H, Oupicky D, Peng F. Synthesis and [28] characterization of theranostic poly(HPMA)-c(RGDyK)DOTA-64Cu copolymer targeting tumor angiogenesis: Tumor localization visualized by positron emission tomography. Mol Imaging 2013; 12(3): 203-12. Herth MM, Barz M, Moderegger D, et al. Radioactive labeling of [29] defined HPMA-based polymeric structures using [18F]FETos for in vivo imaging by positron emission tomography. Biomacromolecules 2009; 10(7): 1697-703. Allmeroth M, Moderegger D, Biesalski B, et al. Modifying the [30] body distribution of HPMA-based copolymers by molecular weight and aggregate formation. Biomacromolecules 2011; 12(7): 2841-9. Herth MM, Barz M, Jahn M, Zentel R, Rösch F. 72/74As-labeling [31] of HPMA based polymers for long-term in vivo PET imaging. Bioorg Med Chem Lett 2010; 20(18): 5454-8. Arranja A, Ivashchenko O, Denkova AG, et al. SPECT/CT [32] imaging of pluronic nanocarriers with varying poly(ethylene oxide) block length and aggregation state. Mol Pharm 2016; 13(3): 1158-65. Patri AK, Kukowska-Latallo JF, Baker JR Jr. Targeted drug [33] delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005; 57(15): 2203-14. Qiao Z, Shi X. Dendrimer-based molecular imaging contrast [34] agents. Prog Polym Sci 2015; 44: 1-27. Mintzer MA, Grinstaff MW. Biomedical applications of [35] dendrimers: A tutorial. Chem Soc Rev 2011; 40(1): 173-90. Liko F, Hindré F, Fernandez-Megia E. Dendrimers as innovative [36] radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules 2016; 17(10): 3103-14. Longmire M, Choyke PL, Kobayashi H. Dendrimer-based [37] contrast agents for molecular imaging. Curr Top Med Chem 2008; 8(14): 1180-6. Kobayashi H, Kawamoto S, Jo SK, Bryant HL Jr, Brechbiel MW, [38] Star RA. Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores. Bioconjug Chem 2003; 14(2): 388-94. Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents [39] with dendrimer cores. Adv Drug Deliv Rev 2005; 57(15): 2271-86. Kobayashi H, Wu C, Kim MK, Paik CH, Carrasquillo JA, [40] Brechbiel MW. Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody. Bioconjug Chem 1999; 10(1): 103-11. Uehara T, Ishii D, Uemura T, et al. gamma-Glutamyl PAMAM [41] dendrimer as versatile precursor for dendrimer-based targeting devices. Bioconjug Chem 2010; 21(1): 175-81. Zhao L, Zhu J, Cheng Y, et al. Chlorotoxin-conjugated [42] multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 2015; 7(35): 19798-808. Zhu J, Zhao L, Cheng Y, et al. Radionuclide (131)I-labeled [43] multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 2015; 7(43): 18169-78. Laznickova A, Biricova V, Laznicek M, Hermann P. [44] Mono(pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: Radiolabeling and biodistribution studies. Appl Radiat Isot 2014; 84: 70-7. Cui W, Zhang Y, Xu X, Shen YM. Synthesis and 188Re [45] radiolabelling of dendrimer polyamide amine (PAMAM) folic acid conjugate. Med Chem 2012; 8(4): 727-31. Khan MK, Minc LD, Nigavekar SS, et al. Fabrication of 198Au0 [46] radioactive composite nanodevices and their use for nanobrachytherapy. Nanomedicine (Lond) 2008; 4(1): 57-69. Wu C, Brechbiel MW, Kozak RW, Gansow OA. Metal-chelate[47] dendrimer-antibody constructs for use in radioimmunotherapy and imaging. Bioorg Med Chem Lett 1994; 4(3): 449-54. Mamede M, Saga T, Kobayashi H, et al. Radiolabeling of avidin [48] with very high specific activity for internal radiation therapy of intraperitoneally disseminated tumors. Clin Cancer Res 2003; 9(10 Pt 1): 3756-62. Biricová V, Lázničková A, Lázníček M, Polášek M, Hermann P. [49] Radiolabeling of PAMAM dendrimers conjugated to a pyridineN-oxide DOTA analog with 111 In: Optimization of reaction conditions and biodistribution. J Pharm Biomed Anal 2011; 56(3): 505-12. Almutairi A, Rossin R, Shokeen M, et al. Biodegradable dendritic [50] positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 2009; 106(3): 685-90. Zhang Y, Sun Y, Xu X, et al. Radiosynthesis and micro-SPECT [51] imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett 2010; 20(3): 927-31. Zhang Y, Sun Y, Xu X, et al. Synthesis, biodistribution, and [52] microsingle photon emission computed tomography (SPECT) 16 Current Applied Polymer Science, 2018, Vol. 2, No. 1 de Kruijff et al. imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J Med Chem 2010; 53(8): 3262-72. Xu X, Zhang Y, Wang X, et al. Radiosynthesis, biodistribution [53] and micro-SPECT imaging study of dendrimer-avidin conjugate. Bioorg Med Chem 2011; 19(5): 1643-8. Parrott MC, Benhabbour SR, Saab C, et al. Synthesis, [54] radiolabeling, and bio-imaging of high-generation polyester dendrimers. J Am Chem Soc 2009; 131(8): 2906-16. Hamaguchi T, Kato K, Yasui H, et al. A phase I and [55] pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 2007; 97(2): 170-6. Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and [56] pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004; 90(11): 2085-91. Batrakova EV, Li S, Li Y, Alakhov VY, Elmquist WF, Kabanov [57] AV. Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Release 2004; 100(3): 389-97. Cheng CC, Huang CF, Ho AS, et al. Novel targeted nuclear [58] imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomedicine 2013; 8: 1385-91. Hoang B, Lee H, Reilly RM, Allen C. Noninvasive monitoring of [59] the fate of 111In-labeled block copolymer micelles by high resolution and high sensitivity microSPECT/CT imaging. Mol Pharm 2009; 6(2): 581-92. Allmeroth M, Moderegger D, Gündel D, et al. PEGylation of [60] HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography. J Control Release 2013; 172(1): 77-85. Li A, Luehmann HP, Sun G, et al. Synthesis and in vivo [61] pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly(carboxybetaine) versus poly(ethylene glycol) surface-grafted coatings. ACS Nano 2012; 6(10): 8970-82. Sun X, Rossin R, Turner JL, et al. An assessment of the effects of [62] shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 2005; 6(5): 2541-54. Bhargava P, Zheng JX, Li P, Quirk RP, Harris FW, Cheng SZ. [63] Self-assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution. Macromolecules 2006; 39(14): 4880-8. Laan AC, Santini C, Jennings L, de Jong M, Bernsen MR, [64] Denkova AG. Radiolabeling polymeric micelles for in viv","PeriodicalId":10768,"journal":{"name":"Current Applied Polymer Science","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Radiolabeling Methods and Nuclear Imaging Techniques in the Design of New Polymeric Carriers for Cancer Therapy\",\"authors\":\"R. D. Kruijff, A. Arranja, A. Denkova\",\"doi\":\"10.2174/2452271602666180102150733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"P3-10-04: A open-label, randomized, parallel, phase III trial to evaluate the efficacy and safety of Genexol ® -PM compared to Genexol ® (conventional paclitaxel with cremorphor EL) in recurrent or metastatic breast cancer patients. Cancer Research 2015; 75 (9 Supplement): P3-10-04-P3-10-04. Varela-Moreira A, Shi Y, Fens MH, Lammers T, Hennink WE, [17] Schiffelers RM. Clinical application of polymeric micelles for the Radiolabeling Methods and Nuclear Imaging Techniques Current Applied Polymer Science, 2018, Vol. 2, No. 1 15 treatment of cancer. Materials Chemistry Frontiers 2017; 1(8): 1485-501. Subbiah V, Combest A, Griley-Olsen J, Sharma N, Andrews E, [18] Bobe I, et al. Phase Ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine (G) in pts with advanced solid tumors. Ann Oncol 2016; 27(suppl_6): 398P-P. Saeki T, Mukai H, Ro J, et al. 250PA Global phase III clinical [19] study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Ann Oncol 2017; 28(suppl_5): mdx365.013-. Von Hoff DD, Mita MM, Ramanathan RK, et al. Phase I study of [20] PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res 2016; 22(13): 3157-63. Hu Q, Rijcken CJ, Bansal R, Hennink WE, Storm G, Prakash J. [21] Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. Biomaterials 2015; 53: 370-8. Burris HA, Wang JS-Z, Johnson ML, Falchook GS, Jones SF, [22] Strickland DK, et al. A phase I, open-label, first-time-in-patient dose escalation and expansion study to assess the safety, tolerability, and pharmacokinetics of nanoparticle encapsulated Aurora B kinase inhibitor AZD2811 in patients with advanced solid tumours. J Clin Oncol 2017; 15_suppl: TPS2608-. Smits ML, Nijsen JF, van den Bosch MA, et al. Holmium-166 [23] radioembolization for the treatment of patients with liver metastases: Design of the phase I HEPAR trial. J Exp Clin Cancer Res 2010; 29(1): 70. Smits ML, Nijsen JF, van den Bosch MA, et al. Holmium-166 [24] radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): A phase 1, dose-escalation study. Lancet Oncol 2012; 13(10): 1025-34. Feasibility of Holmium-166 Micro Brachytherapy in Head and [25] Neck Tumors (HIT) 2016 [Available from: https: //clinicaltrials.gov/ct2/show/NCT02975739]. Holmium-166-radioembolization in NET After Lutetium-177[26] dotatate: An Efficacy Study (HEPAR_Plus) 2016 [Available from: https: //clinicaltrials.gov/ct2/show/NCT02067988]. Eppard E, Allmeroth M, Zentel R, Roesch F. Labeling of HPMA[27] based, functionalized polymer-systems using metallic radionuclides. J Nucl Med 2013; 54 (Suppl. 2): 501. Yuan J, Zhang H, Kaur H, Oupicky D, Peng F. Synthesis and [28] characterization of theranostic poly(HPMA)-c(RGDyK)DOTA-64Cu copolymer targeting tumor angiogenesis: Tumor localization visualized by positron emission tomography. Mol Imaging 2013; 12(3): 203-12. Herth MM, Barz M, Moderegger D, et al. Radioactive labeling of [29] defined HPMA-based polymeric structures using [18F]FETos for in vivo imaging by positron emission tomography. Biomacromolecules 2009; 10(7): 1697-703. Allmeroth M, Moderegger D, Biesalski B, et al. Modifying the [30] body distribution of HPMA-based copolymers by molecular weight and aggregate formation. Biomacromolecules 2011; 12(7): 2841-9. Herth MM, Barz M, Jahn M, Zentel R, Rösch F. 72/74As-labeling [31] of HPMA based polymers for long-term in vivo PET imaging. Bioorg Med Chem Lett 2010; 20(18): 5454-8. Arranja A, Ivashchenko O, Denkova AG, et al. SPECT/CT [32] imaging of pluronic nanocarriers with varying poly(ethylene oxide) block length and aggregation state. Mol Pharm 2016; 13(3): 1158-65. Patri AK, Kukowska-Latallo JF, Baker JR Jr. Targeted drug [33] delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005; 57(15): 2203-14. Qiao Z, Shi X. Dendrimer-based molecular imaging contrast [34] agents. Prog Polym Sci 2015; 44: 1-27. Mintzer MA, Grinstaff MW. Biomedical applications of [35] dendrimers: A tutorial. Chem Soc Rev 2011; 40(1): 173-90. Liko F, Hindré F, Fernandez-Megia E. Dendrimers as innovative [36] radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules 2016; 17(10): 3103-14. Longmire M, Choyke PL, Kobayashi H. Dendrimer-based [37] contrast agents for molecular imaging. Curr Top Med Chem 2008; 8(14): 1180-6. Kobayashi H, Kawamoto S, Jo SK, Bryant HL Jr, Brechbiel MW, [38] Star RA. Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores. Bioconjug Chem 2003; 14(2): 388-94. Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents [39] with dendrimer cores. Adv Drug Deliv Rev 2005; 57(15): 2271-86. Kobayashi H, Wu C, Kim MK, Paik CH, Carrasquillo JA, [40] Brechbiel MW. Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody. Bioconjug Chem 1999; 10(1): 103-11. Uehara T, Ishii D, Uemura T, et al. gamma-Glutamyl PAMAM [41] dendrimer as versatile precursor for dendrimer-based targeting devices. Bioconjug Chem 2010; 21(1): 175-81. Zhao L, Zhu J, Cheng Y, et al. Chlorotoxin-conjugated [42] multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 2015; 7(35): 19798-808. Zhu J, Zhao L, Cheng Y, et al. Radionuclide (131)I-labeled [43] multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 2015; 7(43): 18169-78. Laznickova A, Biricova V, Laznicek M, Hermann P. [44] Mono(pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: Radiolabeling and biodistribution studies. Appl Radiat Isot 2014; 84: 70-7. Cui W, Zhang Y, Xu X, Shen YM. Synthesis and 188Re [45] radiolabelling of dendrimer polyamide amine (PAMAM) folic acid conjugate. Med Chem 2012; 8(4): 727-31. Khan MK, Minc LD, Nigavekar SS, et al. Fabrication of 198Au0 [46] radioactive composite nanodevices and their use for nanobrachytherapy. Nanomedicine (Lond) 2008; 4(1): 57-69. Wu C, Brechbiel MW, Kozak RW, Gansow OA. Metal-chelate[47] dendrimer-antibody constructs for use in radioimmunotherapy and imaging. Bioorg Med Chem Lett 1994; 4(3): 449-54. Mamede M, Saga T, Kobayashi H, et al. Radiolabeling of avidin [48] with very high specific activity for internal radiation therapy of intraperitoneally disseminated tumors. Clin Cancer Res 2003; 9(10 Pt 1): 3756-62. Biricová V, Lázničková A, Lázníček M, Polášek M, Hermann P. [49] Radiolabeling of PAMAM dendrimers conjugated to a pyridineN-oxide DOTA analog with 111 In: Optimization of reaction conditions and biodistribution. J Pharm Biomed Anal 2011; 56(3): 505-12. Almutairi A, Rossin R, Shokeen M, et al. Biodegradable dendritic [50] positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 2009; 106(3): 685-90. Zhang Y, Sun Y, Xu X, et al. Radiosynthesis and micro-SPECT [51] imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett 2010; 20(3): 927-31. Zhang Y, Sun Y, Xu X, et al. Synthesis, biodistribution, and [52] microsingle photon emission computed tomography (SPECT) 16 Current Applied Polymer Science, 2018, Vol. 2, No. 1 de Kruijff et al. imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J Med Chem 2010; 53(8): 3262-72. Xu X, Zhang Y, Wang X, et al. Radiosynthesis, biodistribution [53] and micro-SPECT imaging study of dendrimer-avidin conjugate. Bioorg Med Chem 2011; 19(5): 1643-8. Parrott MC, Benhabbour SR, Saab C, et al. Synthesis, [54] radiolabeling, and bio-imaging of high-generation polyester dendrimers. J Am Chem Soc 2009; 131(8): 2906-16. Hamaguchi T, Kato K, Yasui H, et al. A phase I and [55] pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 2007; 97(2): 170-6. Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and [56] pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004; 90(11): 2085-91. Batrakova EV, Li S, Li Y, Alakhov VY, Elmquist WF, Kabanov [57] AV. Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Release 2004; 100(3): 389-97. Cheng CC, Huang CF, Ho AS, et al. Novel targeted nuclear [58] imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomedicine 2013; 8: 1385-91. Hoang B, Lee H, Reilly RM, Allen C. Noninvasive monitoring of [59] the fate of 111In-labeled block copolymer micelles by high resolution and high sensitivity microSPECT/CT imaging. Mol Pharm 2009; 6(2): 581-92. Allmeroth M, Moderegger D, Gündel D, et al. PEGylation of [60] HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography. J Control Release 2013; 172(1): 77-85. Li A, Luehmann HP, Sun G, et al. Synthesis and in vivo [61] pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly(carboxybetaine) versus poly(ethylene glycol) surface-grafted coatings. ACS Nano 2012; 6(10): 8970-82. Sun X, Rossin R, Turner JL, et al. An assessment of the effects of [62] shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 2005; 6(5): 2541-54. Bhargava P, Zheng JX, Li P, Quirk RP, Harris FW, Cheng SZ. [63] Self-assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution. Macromolecules 2006; 39(14): 4880-8. Laan AC, Santini C, Jennings L, de Jong M, Bernsen MR, [64] Denkova AG. Radiolabeling polymeric micelles for in viv\",\"PeriodicalId\":10768,\"journal\":{\"name\":\"Current Applied Polymer Science\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2452271602666180102150733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2452271602666180102150733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

P3-10-04:一项开放标签、随机、平行、III期试验,评估Genexol®-PM与Genexol®(常规紫杉醇加cremorphor EL)治疗复发或转移性乳腺癌患者的疗效和安全性。癌症研究2015;75(增刊9):P3-10-04-P3-10-04。李建军,李建军,李建军,等。[17]高分子胶束在放射性标记方法和核成像技术中的临床应用。应用高分子科学,2018,Vol. 2, No. 15材料化学前沿2017;1(8): 1485 - 501。[18]张建军,李建军,李建军,等。NC-6004(纳米颗粒顺铂)联合吉西他滨(G)治疗晚期实体瘤患者的Ib/II期临床试验。Ann Oncol 2016;27 (suppl_6): 398 p p。王晓明,王晓明,王晓明,等。NK105与紫杉醇治疗乳腺癌的临床疗效对比研究[19]。Ann Oncol 2017;28 (suppl_5): mdx365.013 -。Von Hoff DD, Mita MM, Ramanathan RK,等。[20] psma靶向含多西他赛纳米颗粒BIND-014在晚期实体瘤患者中的I期研究。clinical Cancer Res 2016;22日(13):3157 - 63。[21]张晓明,李晓明,李晓明,等。多西他赛核交联胶束对乳腺肿瘤的影响。生物材料2015;53: 370 - 8。王建忠,王建忠,刘建军,等[22]。一项I期、开放标签、首次住院的剂量递增和扩展研究,评估纳米颗粒封装的Aurora B激酶抑制剂AZD2811在晚期实体瘤患者中的安全性、耐受性和药代动力学。中华临床杂志2017;15 _suppl: TPS2608 -。Smits ML, Nijsen JF, van den Bosch MA,等。钬-166[23]放射栓塞治疗肝转移患者:I期HEPAR试验设计。中华医学杂志2010;29(1): 70。Smits ML, Nijsen JF, van den Bosch MA,等。钬-166[24]放射栓塞治疗不可切除、化疗难治性肝转移(HEPAR试验):一项剂量递增的1期研究。柳叶刀肿瘤学2012;13(10): 1025 - 34。钬-166微近距离治疗头颈部肿瘤[25]的可行性[来源:https: //clinicaltrials.gov/ct2/show/NCT02975739]HEPAR_Plus (HEPAR_Plus) 2016[来源:https: //clinicaltrials.gov/ct2/show/NCT02067988]。李建军,李建军,李建军,等。基于聚甲基丙烯酸甲酯(HPMA)的有机高分子体系的研究[27]。中华核医学杂志2013;54(增刊2):501。袁军,张辉,Kaur H, ou挑剔D,彭峰。靶向肿瘤血管生成的治疗性聚(HPMA)-c(RGDyK)DOTA-64Cu共聚物的合成及表征[28]。Mol Imaging 2013;12(3): 203 - 12。Herth MM, Barz M, Moderegger D,等。[29]使用[18F] feto进行体内正电子发射断层成像,对基于hpma的聚合物结构进行放射性标记[29]。《2009年;(7): 1697 - 703。Allmeroth M, Moderegger D, Biesalski B,等。通过分子量和聚集体形成改变hpma基共聚物的体分布[30]。《2011年;12(7): 2841 - 9。王晓明,王晓明,王晓明,等。基于聚丙烯酸甲基苯丙胺的PET成像研究进展[31]。生物医学化学快报2010;20(18): 5454 - 8。Arranja A, Ivashchenko O, Denkova AG等。具有不同聚环氧乙烷块长度和聚集状态的多离子纳米载体的SPECT/CT[32]成像。Mol Pharm 2016;13(3): 1158 - 65。陈晓明,王晓明,王晓明,等。树突状大分子靶向递送药物的研究进展[33]。Adv Drug delivery Rev 2005;57(15): 2203 - 14所示。乔志,石霞。基于树突分子成像造影剂[34]。高分子科学2015;44: 1-27。明策尔硕士,格林斯塔夫硕士。树突状大分子的生物医学应用[35]。化学Soc Rev 2011;40(1): 173 - 90。李建军,李建军,李建军,等。树突状分子在肿瘤放疗中的应用[36]。《2016年;17(10): 3103 - 14所示。李建军,李建军,李建军,等。基于树突聚合物的分子显影剂的研究进展[37]。contemporary medical Chem 2008;8(14): 1180 - 6。张建军,李建军,李建军,等。[38]具有小树突的大分子MRI造影剂:大小和核心之间的药代动力学差异。生物偶联化学2003;14(2): 388 - 94。Kobayashi H, Brechbiel MW。具有树状核的纳米级MRI造影剂[39]。Adv Drug delivery Rev 2005;57(15): 2271 - 86。[40]张建军,张建军,张建军,等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiolabeling Methods and Nuclear Imaging Techniques in the Design of New Polymeric Carriers for Cancer Therapy
P3-10-04: A open-label, randomized, parallel, phase III trial to evaluate the efficacy and safety of Genexol ® -PM compared to Genexol ® (conventional paclitaxel with cremorphor EL) in recurrent or metastatic breast cancer patients. Cancer Research 2015; 75 (9 Supplement): P3-10-04-P3-10-04. Varela-Moreira A, Shi Y, Fens MH, Lammers T, Hennink WE, [17] Schiffelers RM. Clinical application of polymeric micelles for the Radiolabeling Methods and Nuclear Imaging Techniques Current Applied Polymer Science, 2018, Vol. 2, No. 1 15 treatment of cancer. Materials Chemistry Frontiers 2017; 1(8): 1485-501. Subbiah V, Combest A, Griley-Olsen J, Sharma N, Andrews E, [18] Bobe I, et al. Phase Ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine (G) in pts with advanced solid tumors. Ann Oncol 2016; 27(suppl_6): 398P-P. Saeki T, Mukai H, Ro J, et al. 250PA Global phase III clinical [19] study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Ann Oncol 2017; 28(suppl_5): mdx365.013-. Von Hoff DD, Mita MM, Ramanathan RK, et al. Phase I study of [20] PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res 2016; 22(13): 3157-63. Hu Q, Rijcken CJ, Bansal R, Hennink WE, Storm G, Prakash J. [21] Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. Biomaterials 2015; 53: 370-8. Burris HA, Wang JS-Z, Johnson ML, Falchook GS, Jones SF, [22] Strickland DK, et al. A phase I, open-label, first-time-in-patient dose escalation and expansion study to assess the safety, tolerability, and pharmacokinetics of nanoparticle encapsulated Aurora B kinase inhibitor AZD2811 in patients with advanced solid tumours. J Clin Oncol 2017; 15_suppl: TPS2608-. Smits ML, Nijsen JF, van den Bosch MA, et al. Holmium-166 [23] radioembolization for the treatment of patients with liver metastases: Design of the phase I HEPAR trial. J Exp Clin Cancer Res 2010; 29(1): 70. Smits ML, Nijsen JF, van den Bosch MA, et al. Holmium-166 [24] radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): A phase 1, dose-escalation study. Lancet Oncol 2012; 13(10): 1025-34. Feasibility of Holmium-166 Micro Brachytherapy in Head and [25] Neck Tumors (HIT) 2016 [Available from: https: //clinicaltrials.gov/ct2/show/NCT02975739]. Holmium-166-radioembolization in NET After Lutetium-177[26] dotatate: An Efficacy Study (HEPAR_Plus) 2016 [Available from: https: //clinicaltrials.gov/ct2/show/NCT02067988]. Eppard E, Allmeroth M, Zentel R, Roesch F. Labeling of HPMA[27] based, functionalized polymer-systems using metallic radionuclides. J Nucl Med 2013; 54 (Suppl. 2): 501. Yuan J, Zhang H, Kaur H, Oupicky D, Peng F. Synthesis and [28] characterization of theranostic poly(HPMA)-c(RGDyK)DOTA-64Cu copolymer targeting tumor angiogenesis: Tumor localization visualized by positron emission tomography. Mol Imaging 2013; 12(3): 203-12. Herth MM, Barz M, Moderegger D, et al. Radioactive labeling of [29] defined HPMA-based polymeric structures using [18F]FETos for in vivo imaging by positron emission tomography. Biomacromolecules 2009; 10(7): 1697-703. Allmeroth M, Moderegger D, Biesalski B, et al. Modifying the [30] body distribution of HPMA-based copolymers by molecular weight and aggregate formation. Biomacromolecules 2011; 12(7): 2841-9. Herth MM, Barz M, Jahn M, Zentel R, Rösch F. 72/74As-labeling [31] of HPMA based polymers for long-term in vivo PET imaging. Bioorg Med Chem Lett 2010; 20(18): 5454-8. Arranja A, Ivashchenko O, Denkova AG, et al. SPECT/CT [32] imaging of pluronic nanocarriers with varying poly(ethylene oxide) block length and aggregation state. Mol Pharm 2016; 13(3): 1158-65. Patri AK, Kukowska-Latallo JF, Baker JR Jr. Targeted drug [33] delivery with dendrimers: Comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005; 57(15): 2203-14. Qiao Z, Shi X. Dendrimer-based molecular imaging contrast [34] agents. Prog Polym Sci 2015; 44: 1-27. Mintzer MA, Grinstaff MW. Biomedical applications of [35] dendrimers: A tutorial. Chem Soc Rev 2011; 40(1): 173-90. Liko F, Hindré F, Fernandez-Megia E. Dendrimers as innovative [36] radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules 2016; 17(10): 3103-14. Longmire M, Choyke PL, Kobayashi H. Dendrimer-based [37] contrast agents for molecular imaging. Curr Top Med Chem 2008; 8(14): 1180-6. Kobayashi H, Kawamoto S, Jo SK, Bryant HL Jr, Brechbiel MW, [38] Star RA. Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores. Bioconjug Chem 2003; 14(2): 388-94. Kobayashi H, Brechbiel MW. Nano-sized MRI contrast agents [39] with dendrimer cores. Adv Drug Deliv Rev 2005; 57(15): 2271-86. Kobayashi H, Wu C, Kim MK, Paik CH, Carrasquillo JA, [40] Brechbiel MW. Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody. Bioconjug Chem 1999; 10(1): 103-11. Uehara T, Ishii D, Uemura T, et al. gamma-Glutamyl PAMAM [41] dendrimer as versatile precursor for dendrimer-based targeting devices. Bioconjug Chem 2010; 21(1): 175-81. Zhao L, Zhu J, Cheng Y, et al. Chlorotoxin-conjugated [42] multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 2015; 7(35): 19798-808. Zhu J, Zhao L, Cheng Y, et al. Radionuclide (131)I-labeled [43] multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 2015; 7(43): 18169-78. Laznickova A, Biricova V, Laznicek M, Hermann P. [44] Mono(pyridine-N-oxide) DOTA analog and its G1/G4-PAMAM dendrimer conjugates labeled with 177Lu: Radiolabeling and biodistribution studies. Appl Radiat Isot 2014; 84: 70-7. Cui W, Zhang Y, Xu X, Shen YM. Synthesis and 188Re [45] radiolabelling of dendrimer polyamide amine (PAMAM) folic acid conjugate. Med Chem 2012; 8(4): 727-31. Khan MK, Minc LD, Nigavekar SS, et al. Fabrication of 198Au0 [46] radioactive composite nanodevices and their use for nanobrachytherapy. Nanomedicine (Lond) 2008; 4(1): 57-69. Wu C, Brechbiel MW, Kozak RW, Gansow OA. Metal-chelate[47] dendrimer-antibody constructs for use in radioimmunotherapy and imaging. Bioorg Med Chem Lett 1994; 4(3): 449-54. Mamede M, Saga T, Kobayashi H, et al. Radiolabeling of avidin [48] with very high specific activity for internal radiation therapy of intraperitoneally disseminated tumors. Clin Cancer Res 2003; 9(10 Pt 1): 3756-62. Biricová V, Lázničková A, Lázníček M, Polášek M, Hermann P. [49] Radiolabeling of PAMAM dendrimers conjugated to a pyridineN-oxide DOTA analog with 111 In: Optimization of reaction conditions and biodistribution. J Pharm Biomed Anal 2011; 56(3): 505-12. Almutairi A, Rossin R, Shokeen M, et al. Biodegradable dendritic [50] positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 2009; 106(3): 685-90. Zhang Y, Sun Y, Xu X, et al. Radiosynthesis and micro-SPECT [51] imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett 2010; 20(3): 927-31. Zhang Y, Sun Y, Xu X, et al. Synthesis, biodistribution, and [52] microsingle photon emission computed tomography (SPECT) 16 Current Applied Polymer Science, 2018, Vol. 2, No. 1 de Kruijff et al. imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J Med Chem 2010; 53(8): 3262-72. Xu X, Zhang Y, Wang X, et al. Radiosynthesis, biodistribution [53] and micro-SPECT imaging study of dendrimer-avidin conjugate. Bioorg Med Chem 2011; 19(5): 1643-8. Parrott MC, Benhabbour SR, Saab C, et al. Synthesis, [54] radiolabeling, and bio-imaging of high-generation polyester dendrimers. J Am Chem Soc 2009; 131(8): 2906-16. Hamaguchi T, Kato K, Yasui H, et al. A phase I and [55] pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 2007; 97(2): 170-6. Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and [56] pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004; 90(11): 2085-91. Batrakova EV, Li S, Li Y, Alakhov VY, Elmquist WF, Kabanov [57] AV. Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Release 2004; 100(3): 389-97. Cheng CC, Huang CF, Ho AS, et al. Novel targeted nuclear [58] imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomedicine 2013; 8: 1385-91. Hoang B, Lee H, Reilly RM, Allen C. Noninvasive monitoring of [59] the fate of 111In-labeled block copolymer micelles by high resolution and high sensitivity microSPECT/CT imaging. Mol Pharm 2009; 6(2): 581-92. Allmeroth M, Moderegger D, Gündel D, et al. PEGylation of [60] HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography. J Control Release 2013; 172(1): 77-85. Li A, Luehmann HP, Sun G, et al. Synthesis and in vivo [61] pharmacokinetic evaluation of degradable shell cross-linked polymer nanoparticles with poly(carboxybetaine) versus poly(ethylene glycol) surface-grafted coatings. ACS Nano 2012; 6(10): 8970-82. Sun X, Rossin R, Turner JL, et al. An assessment of the effects of [62] shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 2005; 6(5): 2541-54. Bhargava P, Zheng JX, Li P, Quirk RP, Harris FW, Cheng SZ. [63] Self-assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution. Macromolecules 2006; 39(14): 4880-8. Laan AC, Santini C, Jennings L, de Jong M, Bernsen MR, [64] Denkova AG. Radiolabeling polymeric micelles for in viv
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信