{"title":"APOBEC3G c端脱氨酶结构域的晶体结构:意义和预测","authors":"A. Niewiadomska, X. Yu","doi":"10.2217/17584310.3.1.31","DOIUrl":null,"url":null,"abstract":"Evaluation of: Holden LG, Prochnow C, Chang YP et al.: Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 456(7218), 121–124 (2008). APOBEC3 proteins belong to a family of cytidine deaminases that can inhibit a variety of retroviruses as well as a range of endogenous retroelements. In particular, APOBEC3G can strongly restrict HIV-1 Vif deletion mutants. Normally, however, HIV-1 counters this restriction by using the viral protein Vif to direct the degradation of APOBEC3 proteins by targeting them for proteasomal degradation. However, in the absence of Vif, APOBEC3G can be packaged into virions and, upon re-infection of new cells, can induce C-to-U mutations in the newly reverse-transcribed, ssDNA. Understanding the structural elements of APOBEC3 proteins, their mechanism of action and how they interact with proteins such as HIV-1 Vif, is crucial for intelligent drug design. In this recently published manuscript, the crystal structure of the C-terminal deamin...","PeriodicalId":88510,"journal":{"name":"HIV therapy","volume":"12 1","pages":"31-34"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structure of the C-terminal deaminase domain of APOBEC3G: implications and projections\",\"authors\":\"A. Niewiadomska, X. Yu\",\"doi\":\"10.2217/17584310.3.1.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evaluation of: Holden LG, Prochnow C, Chang YP et al.: Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 456(7218), 121–124 (2008). APOBEC3 proteins belong to a family of cytidine deaminases that can inhibit a variety of retroviruses as well as a range of endogenous retroelements. In particular, APOBEC3G can strongly restrict HIV-1 Vif deletion mutants. Normally, however, HIV-1 counters this restriction by using the viral protein Vif to direct the degradation of APOBEC3 proteins by targeting them for proteasomal degradation. However, in the absence of Vif, APOBEC3G can be packaged into virions and, upon re-infection of new cells, can induce C-to-U mutations in the newly reverse-transcribed, ssDNA. Understanding the structural elements of APOBEC3 proteins, their mechanism of action and how they interact with proteins such as HIV-1 Vif, is crucial for intelligent drug design. In this recently published manuscript, the crystal structure of the C-terminal deamin...\",\"PeriodicalId\":88510,\"journal\":{\"name\":\"HIV therapy\",\"volume\":\"12 1\",\"pages\":\"31-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HIV therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/17584310.3.1.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HIV therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/17584310.3.1.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crystal structure of the C-terminal deaminase domain of APOBEC3G: implications and projections
Evaluation of: Holden LG, Prochnow C, Chang YP et al.: Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature 456(7218), 121–124 (2008). APOBEC3 proteins belong to a family of cytidine deaminases that can inhibit a variety of retroviruses as well as a range of endogenous retroelements. In particular, APOBEC3G can strongly restrict HIV-1 Vif deletion mutants. Normally, however, HIV-1 counters this restriction by using the viral protein Vif to direct the degradation of APOBEC3 proteins by targeting them for proteasomal degradation. However, in the absence of Vif, APOBEC3G can be packaged into virions and, upon re-infection of new cells, can induce C-to-U mutations in the newly reverse-transcribed, ssDNA. Understanding the structural elements of APOBEC3 proteins, their mechanism of action and how they interact with proteins such as HIV-1 Vif, is crucial for intelligent drug design. In this recently published manuscript, the crystal structure of the C-terminal deamin...