额颞叶痴呆皮层微电路的体内检测:一个实验医学研究平台

A. Shaw, L. Hughes, R. Moran, I. Coyle-Gilchrist, T. Rittman, J. Rowe
{"title":"额颞叶痴呆皮层微电路的体内检测:一个实验医学研究平台","authors":"A. Shaw, L. Hughes, R. Moran, I. Coyle-Gilchrist, T. Rittman, J. Rowe","doi":"10.1101/416388","DOIUrl":null,"url":null,"abstract":"The analysis of neural circuits can provide critical insights into the mechanisms of neurodegeneration and dementias, and offer potential quantitative biological tools to assess novel therapeutics. Here we use behavioural variant frontotemporal dementia (bvFTD) as a model disease. We demonstrate that inversion of canonical microcircuit models to non-invasive human magnetoecphalography can identify the regional- and laminar-specificity of bvFTD pathophysiology, and their parameters can accurately differentiate patients from matched healthy controls. Using such models, we show that changes in local coupling in frontotemporal dementia underlie the failure to adequately establish sensory predictions, leading to altered prediction error responses in a cortical information-processing hierarchy. Using machine learning, this model-based approach provided greater case-control classification accuracy than conventional evoked cortical responses. We suggest that this approach provides an in vivo platform for testing mechanistic hypotheses about disease progression and pharmacotherapeutics.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"2 1","pages":"1837 - 1847"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"In Vivo Assay of Cortical Microcircuitry in Frontotemporal Dementia: A Platform for Experimental Medicine Studies\",\"authors\":\"A. Shaw, L. Hughes, R. Moran, I. Coyle-Gilchrist, T. Rittman, J. Rowe\",\"doi\":\"10.1101/416388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of neural circuits can provide critical insights into the mechanisms of neurodegeneration and dementias, and offer potential quantitative biological tools to assess novel therapeutics. Here we use behavioural variant frontotemporal dementia (bvFTD) as a model disease. We demonstrate that inversion of canonical microcircuit models to non-invasive human magnetoecphalography can identify the regional- and laminar-specificity of bvFTD pathophysiology, and their parameters can accurately differentiate patients from matched healthy controls. Using such models, we show that changes in local coupling in frontotemporal dementia underlie the failure to adequately establish sensory predictions, leading to altered prediction error responses in a cortical information-processing hierarchy. Using machine learning, this model-based approach provided greater case-control classification accuracy than conventional evoked cortical responses. We suggest that this approach provides an in vivo platform for testing mechanistic hypotheses about disease progression and pharmacotherapeutics.\",\"PeriodicalId\":9825,\"journal\":{\"name\":\"Cerebral Cortex (New York, NY)\",\"volume\":\"2 1\",\"pages\":\"1837 - 1847\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral Cortex (New York, NY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/416388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral Cortex (New York, NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/416388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

对神经回路的分析可以为神经变性和痴呆的机制提供重要的见解,并提供潜在的定量生物学工具来评估新的治疗方法。在这里,我们使用行为变异额颞叶痴呆(bvFTD)作为模型疾病。我们证明,将典型微电路模型倒置到非侵入性人体磁图可以识别bvFTD病理生理的区域和层状特异性,其参数可以准确区分患者与匹配的健康对照。使用这些模型,我们发现额颞叶痴呆局部耦合的变化是无法充分建立感官预测的基础,导致皮层信息处理层次中预测误差反应的改变。使用机器学习,这种基于模型的方法比传统的诱发皮层反应提供了更高的病例对照分类准确性。我们认为,这种方法为测试疾病进展和药物治疗的机制假设提供了一个体内平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Vivo Assay of Cortical Microcircuitry in Frontotemporal Dementia: A Platform for Experimental Medicine Studies
The analysis of neural circuits can provide critical insights into the mechanisms of neurodegeneration and dementias, and offer potential quantitative biological tools to assess novel therapeutics. Here we use behavioural variant frontotemporal dementia (bvFTD) as a model disease. We demonstrate that inversion of canonical microcircuit models to non-invasive human magnetoecphalography can identify the regional- and laminar-specificity of bvFTD pathophysiology, and their parameters can accurately differentiate patients from matched healthy controls. Using such models, we show that changes in local coupling in frontotemporal dementia underlie the failure to adequately establish sensory predictions, leading to altered prediction error responses in a cortical information-processing hierarchy. Using machine learning, this model-based approach provided greater case-control classification accuracy than conventional evoked cortical responses. We suggest that this approach provides an in vivo platform for testing mechanistic hypotheses about disease progression and pharmacotherapeutics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信