低功耗高效存储维特比解码器的设计

Lupin Chen, Jinjin He, Zhongfeng Wang
{"title":"低功耗高效存储维特比解码器的设计","authors":"Lupin Chen, Jinjin He, Zhongfeng Wang","doi":"10.1109/SIPS.2007.4387532","DOIUrl":null,"url":null,"abstract":"This paper presents a new low-power memory-efficient trace-back (TB) scheme for high constraint length Viterbi decoder (VD). With the trace-back modifications and path merging techniques, up to 50% memory read operations in the survivor memory unit (SMU) can be reduced. The memory size of SMU can be reduced by 33% and the decoding latency can be reduced by 14%. The simulation results show that compared to the conventional TB scheme, the performance loss of this scheme is negligible.","PeriodicalId":93225,"journal":{"name":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","volume":"80 1","pages":"132-135"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design of Low-Power Memory-Efficient Viterbi Decoder\",\"authors\":\"Lupin Chen, Jinjin He, Zhongfeng Wang\",\"doi\":\"10.1109/SIPS.2007.4387532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new low-power memory-efficient trace-back (TB) scheme for high constraint length Viterbi decoder (VD). With the trace-back modifications and path merging techniques, up to 50% memory read operations in the survivor memory unit (SMU) can be reduced. The memory size of SMU can be reduced by 33% and the decoding latency can be reduced by 14%. The simulation results show that compared to the conventional TB scheme, the performance loss of this scheme is negligible.\",\"PeriodicalId\":93225,\"journal\":{\"name\":\"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)\",\"volume\":\"80 1\",\"pages\":\"132-135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.2007.4387532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.2007.4387532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

针对高约束长度维特比解码器(VD),提出了一种新的低功耗高效存储回溯(TB)方案。通过回溯修改和路径合并技术,可以减少幸存者内存单元(SMU)中多达50%的内存读取操作。SMU的内存大小可以减少33%,解码延迟可以减少14%。仿真结果表明,与传统的TB方案相比,该方案的性能损失可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Low-Power Memory-Efficient Viterbi Decoder
This paper presents a new low-power memory-efficient trace-back (TB) scheme for high constraint length Viterbi decoder (VD). With the trace-back modifications and path merging techniques, up to 50% memory read operations in the survivor memory unit (SMU) can be reduced. The memory size of SMU can be reduced by 33% and the decoding latency can be reduced by 14%. The simulation results show that compared to the conventional TB scheme, the performance loss of this scheme is negligible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信