L. Trujillo, Joel Nation, Luis Muñoz Delgado, E. Galván
{"title":"使用DeepInsight特征空间对齐预测遗传规划迁移学习的成功","authors":"L. Trujillo, Joel Nation, Luis Muñoz Delgado, E. Galván","doi":"10.3233/aic-230104","DOIUrl":null,"url":null,"abstract":"In Transfer Learning (TL) a model that is trained on one problem is used to simplify the learning process on a second problem. TL has achieved impressive results for Deep Learning, but has been scarcely studied in genetic programming (GP). Moreover, predicting when, or why, TL might succeed is an open question. This work presents an approach to determine when two problems might be compatible for TL. This question is studied for TL with GP for the first time, focusing on multiclass classification. Using a set of reference problems, each problem pair is categorized into one of two groups. TL compatible problems are problem pairs where TL was successful, while TL non-compatible problems are problem pairs where TL was unsuccessful, relative to baseline methods. DeepInsight is used to extract a 2D projection of the feature space of each problem, and a similarity measure is computed by registering the feature space representation of both problems. Results show that it is possible to distinguish between both groups with statistical significant results. The proposal does not require model training or inference, and can be applied to problems from different domains, with a different a number of samples, features and classes.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"4 1","pages":"159-173"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the success of transfer learning for genetic programming using DeepInsight feature space alignment\",\"authors\":\"L. Trujillo, Joel Nation, Luis Muñoz Delgado, E. Galván\",\"doi\":\"10.3233/aic-230104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Transfer Learning (TL) a model that is trained on one problem is used to simplify the learning process on a second problem. TL has achieved impressive results for Deep Learning, but has been scarcely studied in genetic programming (GP). Moreover, predicting when, or why, TL might succeed is an open question. This work presents an approach to determine when two problems might be compatible for TL. This question is studied for TL with GP for the first time, focusing on multiclass classification. Using a set of reference problems, each problem pair is categorized into one of two groups. TL compatible problems are problem pairs where TL was successful, while TL non-compatible problems are problem pairs where TL was unsuccessful, relative to baseline methods. DeepInsight is used to extract a 2D projection of the feature space of each problem, and a similarity measure is computed by registering the feature space representation of both problems. Results show that it is possible to distinguish between both groups with statistical significant results. The proposal does not require model training or inference, and can be applied to problems from different domains, with a different a number of samples, features and classes.\",\"PeriodicalId\":50835,\"journal\":{\"name\":\"AI Communications\",\"volume\":\"4 1\",\"pages\":\"159-173\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/aic-230104\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-230104","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Predicting the success of transfer learning for genetic programming using DeepInsight feature space alignment
In Transfer Learning (TL) a model that is trained on one problem is used to simplify the learning process on a second problem. TL has achieved impressive results for Deep Learning, but has been scarcely studied in genetic programming (GP). Moreover, predicting when, or why, TL might succeed is an open question. This work presents an approach to determine when two problems might be compatible for TL. This question is studied for TL with GP for the first time, focusing on multiclass classification. Using a set of reference problems, each problem pair is categorized into one of two groups. TL compatible problems are problem pairs where TL was successful, while TL non-compatible problems are problem pairs where TL was unsuccessful, relative to baseline methods. DeepInsight is used to extract a 2D projection of the feature space of each problem, and a similarity measure is computed by registering the feature space representation of both problems. Results show that it is possible to distinguish between both groups with statistical significant results. The proposal does not require model training or inference, and can be applied to problems from different domains, with a different a number of samples, features and classes.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.