{"title":"尼帕病毒小分子抑制剂的硅对接分析","authors":"N. Mohan, V. Meera, J. Soja, M. Latha","doi":"10.14233/ajomc.2019.ajomc-p235","DOIUrl":null,"url":null,"abstract":"Nipah virus is a highly pathogenic paramyxovirus belonging to the genus Henipavirus, classified as Biosafety Level 4 (BSL4) agents. The virus causes severe illness characterized by encephalitis or respiratory disease in human. The case-lethality rate of Nipah was reported to be 70 % in India, since year 2001. Despite the high pathogenicity of virus, no therapeutics are currently approved for use in human. But, ribavirin, favipiravir and human mono clonal antibody was found to reduce the intensity in early stage. Medicinal plants serve as a rich source of therapeutically active compounds. Nyctanthus arbortristis Linn or pavizhamalli (Harsinger) is traditionally known to have activity against Nipha virus. In this study, therapeutic activity of phytochemicals arbortristoside A and arbortristoside C present in pavizhamalli plant against Nipha virus target was investigated by computational docking simulation. Computational docking analysis was performed using Schrodinger Suite. The phytochemicals arbortristoside A and arbortristoside C show promising binding affinity with the target Nipah virus than the reference drugs. Results of the study could be advantageous to develop a new lead molecule against Nipah virus infection.","PeriodicalId":8846,"journal":{"name":"Asian Journal of Organic & Medicinal Chemistry","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"in silico Docking Analysis of Small Molecule Inhibitors from\\nNyctanthes arbor-tristis against Nipah Virus Infection\",\"authors\":\"N. Mohan, V. Meera, J. Soja, M. Latha\",\"doi\":\"10.14233/ajomc.2019.ajomc-p235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nipah virus is a highly pathogenic paramyxovirus belonging to the genus Henipavirus, classified as Biosafety Level 4 (BSL4) agents. The virus causes severe illness characterized by encephalitis or respiratory disease in human. The case-lethality rate of Nipah was reported to be 70 % in India, since year 2001. Despite the high pathogenicity of virus, no therapeutics are currently approved for use in human. But, ribavirin, favipiravir and human mono clonal antibody was found to reduce the intensity in early stage. Medicinal plants serve as a rich source of therapeutically active compounds. Nyctanthus arbortristis Linn or pavizhamalli (Harsinger) is traditionally known to have activity against Nipha virus. In this study, therapeutic activity of phytochemicals arbortristoside A and arbortristoside C present in pavizhamalli plant against Nipha virus target was investigated by computational docking simulation. Computational docking analysis was performed using Schrodinger Suite. The phytochemicals arbortristoside A and arbortristoside C show promising binding affinity with the target Nipah virus than the reference drugs. Results of the study could be advantageous to develop a new lead molecule against Nipah virus infection.\",\"PeriodicalId\":8846,\"journal\":{\"name\":\"Asian Journal of Organic & Medicinal Chemistry\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Organic & Medicinal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14233/ajomc.2019.ajomc-p235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic & Medicinal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14233/ajomc.2019.ajomc-p235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
in silico Docking Analysis of Small Molecule Inhibitors from
Nyctanthes arbor-tristis against Nipah Virus Infection
Nipah virus is a highly pathogenic paramyxovirus belonging to the genus Henipavirus, classified as Biosafety Level 4 (BSL4) agents. The virus causes severe illness characterized by encephalitis or respiratory disease in human. The case-lethality rate of Nipah was reported to be 70 % in India, since year 2001. Despite the high pathogenicity of virus, no therapeutics are currently approved for use in human. But, ribavirin, favipiravir and human mono clonal antibody was found to reduce the intensity in early stage. Medicinal plants serve as a rich source of therapeutically active compounds. Nyctanthus arbortristis Linn or pavizhamalli (Harsinger) is traditionally known to have activity against Nipha virus. In this study, therapeutic activity of phytochemicals arbortristoside A and arbortristoside C present in pavizhamalli plant against Nipha virus target was investigated by computational docking simulation. Computational docking analysis was performed using Schrodinger Suite. The phytochemicals arbortristoside A and arbortristoside C show promising binding affinity with the target Nipah virus than the reference drugs. Results of the study could be advantageous to develop a new lead molecule against Nipah virus infection.