$\mathbb{R}^n$上$(p,h)$-凸函数的Hermite-Hadamard型不等式

IF 0.7 4区 数学 Q2 MATHEMATICS
Jianmiao Ruan
{"title":"$\\mathbb{R}^n$上$(p,h)$-凸函数的Hermite-Hadamard型不等式","authors":"Jianmiao Ruan","doi":"10.15672/hujms.1283922","DOIUrl":null,"url":null,"abstract":"In this paper, the concept of the $(p,h)$-convex function is introduced, which generalizes the $p$-convex function and the $h$-convex function, and Hermite-Hadamard type inequalities for $(p,h)$-convex functions on $\\mathbb{R}^n$ are established. Furthermore, some mappings related to the above inequalities are studied and some known results are generalized.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"98 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hermite-Hadamard type inequalities for $(p,h)$-convex functions on $\\\\mathbb{R}^n$\",\"authors\":\"Jianmiao Ruan\",\"doi\":\"10.15672/hujms.1283922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the concept of the $(p,h)$-convex function is introduced, which generalizes the $p$-convex function and the $h$-convex function, and Hermite-Hadamard type inequalities for $(p,h)$-convex functions on $\\\\mathbb{R}^n$ are established. Furthermore, some mappings related to the above inequalities are studied and some known results are generalized.\",\"PeriodicalId\":55078,\"journal\":{\"name\":\"Hacettepe Journal of Mathematics and Statistics\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hacettepe Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.15672/hujms.1283922\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1283922","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入$(p,h)$-凸函数的概念,推广了$p$-凸函数和$h$-凸函数,并在$\mathbb{R}^n$上建立了$(p,h)$-凸函数的Hermite-Hadamard型不等式。进一步研究了与上述不等式相关的一些映射,并推广了一些已知的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hermite-Hadamard type inequalities for $(p,h)$-convex functions on $\mathbb{R}^n$
In this paper, the concept of the $(p,h)$-convex function is introduced, which generalizes the $p$-convex function and the $h$-convex function, and Hermite-Hadamard type inequalities for $(p,h)$-convex functions on $\mathbb{R}^n$ are established. Furthermore, some mappings related to the above inequalities are studied and some known results are generalized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信