Scott Hamill, J. Whitehead, Peter Ferenz, R. Shepherd, H. Kress-Gazit
{"title":"柔性机器人弹性任务规划与执行","authors":"Scott Hamill, J. Whitehead, Peter Ferenz, R. Shepherd, H. Kress-Gazit","doi":"10.1109/ICRA.2019.8794303","DOIUrl":null,"url":null,"abstract":"Soft robots utilize compliant materials to perform motions and behaviors not typically achievable by rigid bodied systems. These materials and soft actuator fabrication methods have been leveraged to create multigait walking soft robots. However, soft materials are prone to failure, restricting the ability of soft robots to accomplish tasks. In this work we address the problem of generating reactive controllers for multigait walking soft robots that are resilient to actuator failure by applying methods of formal synthesis. We present a sensing-based abstraction for actuator performance, provide a framework for encoding multigait behavior and actuator failure in Linear Temporal Logic (LTL), and demonstrate synthesized controllers on a physical soft robot.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"131 1","pages":"5148-5154"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resilient Task Planning and Execution for Reactive Soft Robots\",\"authors\":\"Scott Hamill, J. Whitehead, Peter Ferenz, R. Shepherd, H. Kress-Gazit\",\"doi\":\"10.1109/ICRA.2019.8794303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft robots utilize compliant materials to perform motions and behaviors not typically achievable by rigid bodied systems. These materials and soft actuator fabrication methods have been leveraged to create multigait walking soft robots. However, soft materials are prone to failure, restricting the ability of soft robots to accomplish tasks. In this work we address the problem of generating reactive controllers for multigait walking soft robots that are resilient to actuator failure by applying methods of formal synthesis. We present a sensing-based abstraction for actuator performance, provide a framework for encoding multigait behavior and actuator failure in Linear Temporal Logic (LTL), and demonstrate synthesized controllers on a physical soft robot.\",\"PeriodicalId\":6730,\"journal\":{\"name\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"volume\":\"131 1\",\"pages\":\"5148-5154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2019.8794303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8794303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resilient Task Planning and Execution for Reactive Soft Robots
Soft robots utilize compliant materials to perform motions and behaviors not typically achievable by rigid bodied systems. These materials and soft actuator fabrication methods have been leveraged to create multigait walking soft robots. However, soft materials are prone to failure, restricting the ability of soft robots to accomplish tasks. In this work we address the problem of generating reactive controllers for multigait walking soft robots that are resilient to actuator failure by applying methods of formal synthesis. We present a sensing-based abstraction for actuator performance, provide a framework for encoding multigait behavior and actuator failure in Linear Temporal Logic (LTL), and demonstrate synthesized controllers on a physical soft robot.