基于转换型阴极的水锌离子电池综述

Junming Kang, Zedong Zhao, Huajing Li, Yuhuan Meng, Bo Hu, Hongbin Lu
{"title":"基于转换型阴极的水锌离子电池综述","authors":"Junming Kang, Zedong Zhao, Huajing Li, Yuhuan Meng, Bo Hu, Hongbin Lu","doi":"10.20517/energymater.2022.05","DOIUrl":null,"url":null,"abstract":"The scarcity of lithium resources and the unsafety of organic electrolytes limit the further application of lithium-ion batteries (LIBs) in electric vehicles and grid-scale energy storage. Aqueous zinc-ion batteries (AZIBs) are potential complements for LIBs for large-scale grid energy storage because of their abundant resources, environmental friendliness, intrinsic safety and low cost. However, current AZIBs are mainly based on intercalation-type cathodes and their energy densities are not competitive with LIBs. Fortunately, conversion-type cathodes, with higher specific capacity and lower price, endow AZIBs with excellent potential for practical applications. In this review, the mechanism of energy storage and the progress in developing AZIBs based on conversion-type cathodes are summarized. Perspectives on critical scientific issues and the potential developmental directions of AZIBs are also proposed.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An overview of aqueous zinc-ion batteries based on conversion-type cathodes\",\"authors\":\"Junming Kang, Zedong Zhao, Huajing Li, Yuhuan Meng, Bo Hu, Hongbin Lu\",\"doi\":\"10.20517/energymater.2022.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scarcity of lithium resources and the unsafety of organic electrolytes limit the further application of lithium-ion batteries (LIBs) in electric vehicles and grid-scale energy storage. Aqueous zinc-ion batteries (AZIBs) are potential complements for LIBs for large-scale grid energy storage because of their abundant resources, environmental friendliness, intrinsic safety and low cost. However, current AZIBs are mainly based on intercalation-type cathodes and their energy densities are not competitive with LIBs. Fortunately, conversion-type cathodes, with higher specific capacity and lower price, endow AZIBs with excellent potential for practical applications. In this review, the mechanism of energy storage and the progress in developing AZIBs based on conversion-type cathodes are summarized. Perspectives on critical scientific issues and the potential developmental directions of AZIBs are also proposed.\",\"PeriodicalId\":21863,\"journal\":{\"name\":\"Solar Energy Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2022.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2022.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

锂资源的稀缺性和有机电解质的不安全性限制了锂离子电池在电动汽车和电网规模储能方面的进一步应用。水溶液锌离子电池具有资源丰富、环境友好、本质安全、成本低等优点,是大规模电网储能中锂离子电池的潜在补充。然而,目前的azib主要基于插层型阴极,其能量密度与lib没有竞争力。值得庆幸的是,转换型阴极具有较高的比容量和较低的价格,使azib具有良好的实际应用潜力。本文综述了基于转换型阴极的azib储能机理及研究进展。对azib的关键科学问题和潜在的发展方向提出了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An overview of aqueous zinc-ion batteries based on conversion-type cathodes
The scarcity of lithium resources and the unsafety of organic electrolytes limit the further application of lithium-ion batteries (LIBs) in electric vehicles and grid-scale energy storage. Aqueous zinc-ion batteries (AZIBs) are potential complements for LIBs for large-scale grid energy storage because of their abundant resources, environmental friendliness, intrinsic safety and low cost. However, current AZIBs are mainly based on intercalation-type cathodes and their energy densities are not competitive with LIBs. Fortunately, conversion-type cathodes, with higher specific capacity and lower price, endow AZIBs with excellent potential for practical applications. In this review, the mechanism of energy storage and the progress in developing AZIBs based on conversion-type cathodes are summarized. Perspectives on critical scientific issues and the potential developmental directions of AZIBs are also proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信