{"title":"具有不连续系数且边界条件下含有特征参数的Sturm-Liouville问题","authors":"E. Şen","doi":"10.1155/2013/159243","DOIUrl":null,"url":null,"abstract":"We study a Sturm-Liouville operator with eigenparameter-dependent boundary conditions and transmission conditions at two interior points. We give an operator-theoretic formulation, construct fundamental solutions, investigate some properties of the eigenvalues and corresponding eigenfunctions of the discontinuous Sturm-Liouville problem and then obtain asymptotic formulas for the eigenvalues and eigenfunctions and find Green function of the discontinuous Sturm-Liouville problem.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"27 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Sturm-Liouville Problem with a Discontinuous Coefficient and Containing an Eigenparameter in the Boundary Condition\",\"authors\":\"E. Şen\",\"doi\":\"10.1155/2013/159243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a Sturm-Liouville operator with eigenparameter-dependent boundary conditions and transmission conditions at two interior points. We give an operator-theoretic formulation, construct fundamental solutions, investigate some properties of the eigenvalues and corresponding eigenfunctions of the discontinuous Sturm-Liouville problem and then obtain asymptotic formulas for the eigenvalues and eigenfunctions and find Green function of the discontinuous Sturm-Liouville problem.\",\"PeriodicalId\":20143,\"journal\":{\"name\":\"Physics Research International\",\"volume\":\"27 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/159243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/159243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Sturm-Liouville Problem with a Discontinuous Coefficient and Containing an Eigenparameter in the Boundary Condition
We study a Sturm-Liouville operator with eigenparameter-dependent boundary conditions and transmission conditions at two interior points. We give an operator-theoretic formulation, construct fundamental solutions, investigate some properties of the eigenvalues and corresponding eigenfunctions of the discontinuous Sturm-Liouville problem and then obtain asymptotic formulas for the eigenvalues and eigenfunctions and find Green function of the discontinuous Sturm-Liouville problem.