基于STT-MRAM的低功耗同步非易失性逻辑与定时解复用

Kejie Huang, Rong Zhao, Y. Lian
{"title":"基于STT-MRAM的低功耗同步非易失性逻辑与定时解复用","authors":"Kejie Huang, Rong Zhao, Y. Lian","doi":"10.1145/2770287.2770295","DOIUrl":null,"url":null,"abstract":"The high power and long global interconnection delay are two of the major limits for further scaling down of the process nodes in the very large scale integrated (VLSI) systems. Therefore, new technologies and computer architectures are under focused development to reduce the power consumption and interconnection delay. Magnetic tunnel junction (MTJ) nanopillar with the advantages of non-volatility, fast switching speed, and high density promises new designs and architectures to significantly alleviate the power and delay issues. This paper presents new logic-in-memory designs of the basic logic gates based on MTJs, including INV, (N)AND, (N)OR and XOR. The MTJ sharing and timing demultiplexing techniques are used in the proposed non-volatile logic gates to greatly reduce the write power. The simulation results show that the write power of the proposed non-volatile logic gates is as low as 285fJ/bit. The basic logic gates can finish the read operation in less than 160ps with 4.35f J read energy. Moreover, the proposed non-volatile logic gates may be reconfigured after fabrication, which makes the designs more flexible and robust.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"41 1","pages":"31-36"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"STT-MRAM based low power synchronous non-volatile logic with timing demultiplexing\",\"authors\":\"Kejie Huang, Rong Zhao, Y. Lian\",\"doi\":\"10.1145/2770287.2770295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high power and long global interconnection delay are two of the major limits for further scaling down of the process nodes in the very large scale integrated (VLSI) systems. Therefore, new technologies and computer architectures are under focused development to reduce the power consumption and interconnection delay. Magnetic tunnel junction (MTJ) nanopillar with the advantages of non-volatility, fast switching speed, and high density promises new designs and architectures to significantly alleviate the power and delay issues. This paper presents new logic-in-memory designs of the basic logic gates based on MTJs, including INV, (N)AND, (N)OR and XOR. The MTJ sharing and timing demultiplexing techniques are used in the proposed non-volatile logic gates to greatly reduce the write power. The simulation results show that the write power of the proposed non-volatile logic gates is as low as 285fJ/bit. The basic logic gates can finish the read operation in less than 160ps with 4.35f J read energy. Moreover, the proposed non-volatile logic gates may be reconfigured after fabrication, which makes the designs more flexible and robust.\",\"PeriodicalId\":6519,\"journal\":{\"name\":\"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"41 1\",\"pages\":\"31-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2770287.2770295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2770287.2770295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在超大规模集成电路(VLSI)系统中,高功率和长全局互连延迟是进一步缩小过程节点的两个主要限制。因此,降低功耗和互连延迟的新技术和计算机架构正在重点开发中。磁隧道结(MTJ)纳米柱具有无挥发性、开关速度快、密度高的优点,有望在新的设计和架构中显著缓解功耗和延迟问题。本文介绍了基于mtj的基本逻辑门的新型内存逻辑设计,包括INV、(N)AND、(N)OR和异或。所提出的非易失性逻辑门采用了MTJ共享和定时解复用技术,大大降低了写入功率。仿真结果表明,所设计的非易失性逻辑门的写入功率低至285fJ/bit。基本逻辑门可以在小于160ps的时间内完成读取操作,读取能量为4.35f J。此外,所提出的非易失性逻辑门可以在制造后重新配置,这使得设计更加灵活和健壮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STT-MRAM based low power synchronous non-volatile logic with timing demultiplexing
The high power and long global interconnection delay are two of the major limits for further scaling down of the process nodes in the very large scale integrated (VLSI) systems. Therefore, new technologies and computer architectures are under focused development to reduce the power consumption and interconnection delay. Magnetic tunnel junction (MTJ) nanopillar with the advantages of non-volatility, fast switching speed, and high density promises new designs and architectures to significantly alleviate the power and delay issues. This paper presents new logic-in-memory designs of the basic logic gates based on MTJs, including INV, (N)AND, (N)OR and XOR. The MTJ sharing and timing demultiplexing techniques are used in the proposed non-volatile logic gates to greatly reduce the write power. The simulation results show that the write power of the proposed non-volatile logic gates is as low as 285fJ/bit. The basic logic gates can finish the read operation in less than 160ps with 4.35f J read energy. Moreover, the proposed non-volatile logic gates may be reconfigured after fabrication, which makes the designs more flexible and robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信