鹰嘴豆(Cicer arietinum L.) SSR和形态资料的多变量分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pocovi Mariana, Maximiliano Sosa, R. Delgado, Verónica Castillo, Graciela Collavino, J. Carreras
{"title":"鹰嘴豆(Cicer arietinum L.) SSR和形态资料的多变量分析","authors":"Pocovi Mariana, Maximiliano Sosa, R. Delgado, Verónica Castillo, Graciela Collavino, J. Carreras","doi":"10.1017/s1479262123000059","DOIUrl":null,"url":null,"abstract":"\n In order to enhance genetic potential of chickpea materials from the National University of Córdoba Breeding Programme and Germplasm collection (Argentina), a study for a comprehensive understanding of the amount and pattern of genetic variation within and between genotypes was carried out by applying a multivariate analysis form single simple repeats (SSR) and morphological data. Molecular data were also used to determine the discriminating power for genotype identification, and to find the optimal primer combination to ensure unambiguous identification. With the analysis of 15 SSR markers on 53 genotypes, a total of 58 alleles were detected with individual values ranging from one to nine alleles per locus. High values of discriminating power (Dj ⩾ 0.7, PIC ⩾ 0.7), and low values of confusion probability (Cj ⩽ 0.23) were obtained for at least four evaluated markers. The combination of TA113 + TA114 + H1B09 + TA106 primers was effective for discriminating the 53 chickpea genotypes with a cumulative confusion probability value (Ck) of 9.60 × 10−4. Except for some exceptions, individual chickpea genotypes within a cluster in the consensus tree were definitely more closely related with each other by the origin or pedigree. The results confirmed that both multivariate data analysis methods, ordination and clustering, were complementary. In most genotypes, discriminant principal component analysis classification was consistent with the original clusters defined by molecular data. Differences in results from molecular and morphological data indicate that they provide complementary and relevant information for establishing genetic relationships among chickpea materials and a better description and interpretation of the available variability in the germplasm collection.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate analysis from SSR and morphological data in chickpea (Cicer arietinum L.) for breeding purposes\",\"authors\":\"Pocovi Mariana, Maximiliano Sosa, R. Delgado, Verónica Castillo, Graciela Collavino, J. Carreras\",\"doi\":\"10.1017/s1479262123000059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In order to enhance genetic potential of chickpea materials from the National University of Córdoba Breeding Programme and Germplasm collection (Argentina), a study for a comprehensive understanding of the amount and pattern of genetic variation within and between genotypes was carried out by applying a multivariate analysis form single simple repeats (SSR) and morphological data. Molecular data were also used to determine the discriminating power for genotype identification, and to find the optimal primer combination to ensure unambiguous identification. With the analysis of 15 SSR markers on 53 genotypes, a total of 58 alleles were detected with individual values ranging from one to nine alleles per locus. High values of discriminating power (Dj ⩾ 0.7, PIC ⩾ 0.7), and low values of confusion probability (Cj ⩽ 0.23) were obtained for at least four evaluated markers. The combination of TA113 + TA114 + H1B09 + TA106 primers was effective for discriminating the 53 chickpea genotypes with a cumulative confusion probability value (Ck) of 9.60 × 10−4. Except for some exceptions, individual chickpea genotypes within a cluster in the consensus tree were definitely more closely related with each other by the origin or pedigree. The results confirmed that both multivariate data analysis methods, ordination and clustering, were complementary. In most genotypes, discriminant principal component analysis classification was consistent with the original clusters defined by molecular data. Differences in results from molecular and morphological data indicate that they provide complementary and relevant information for establishing genetic relationships among chickpea materials and a better description and interpretation of the available variability in the germplasm collection.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/s1479262123000059\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s1479262123000059","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了提高阿根廷Córdoba国立大学育种计划和种质资源收集的鹰嘴豆材料的遗传潜力,利用SSR和形态数据进行多变量分析,全面了解鹰嘴豆基因型内和基因型间遗传变异的数量和模式。利用分子数据确定基因型鉴定的判别能力,并寻找最佳引物组合以确保明确鉴定。对53个基因型的15个SSR标记进行分析,共检测到58个等位基因,每个位点的等位基因个体值在1 ~ 9个之间。对于至少四个评估的标记,获得了高辨别能力值(Dj大于或等于0.7,PIC大于或等于0.7)和低混淆概率值(Cj≥0.23)。TA113 + TA114 + H1B09 + TA106引物组合可有效区分53种鹰嘴豆基因型,累积混淆概率值(Ck)为9.60 × 10−4。除个别例外情况外,共识树中一个簇内的鹰嘴豆基因型之间的起源或谱系关系肯定更密切。结果证实,多变量数据分析方法,协调和聚类,是互补的。在大多数基因型中,判别主成分分析分类与分子数据定义的原始聚类一致。分子和形态数据结果的差异表明,它们为建立鹰嘴豆材料间的亲缘关系和更好地描述和解释种质资源中的可利用变异提供了补充和相关的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate analysis from SSR and morphological data in chickpea (Cicer arietinum L.) for breeding purposes
In order to enhance genetic potential of chickpea materials from the National University of Córdoba Breeding Programme and Germplasm collection (Argentina), a study for a comprehensive understanding of the amount and pattern of genetic variation within and between genotypes was carried out by applying a multivariate analysis form single simple repeats (SSR) and morphological data. Molecular data were also used to determine the discriminating power for genotype identification, and to find the optimal primer combination to ensure unambiguous identification. With the analysis of 15 SSR markers on 53 genotypes, a total of 58 alleles were detected with individual values ranging from one to nine alleles per locus. High values of discriminating power (Dj ⩾ 0.7, PIC ⩾ 0.7), and low values of confusion probability (Cj ⩽ 0.23) were obtained for at least four evaluated markers. The combination of TA113 + TA114 + H1B09 + TA106 primers was effective for discriminating the 53 chickpea genotypes with a cumulative confusion probability value (Ck) of 9.60 × 10−4. Except for some exceptions, individual chickpea genotypes within a cluster in the consensus tree were definitely more closely related with each other by the origin or pedigree. The results confirmed that both multivariate data analysis methods, ordination and clustering, were complementary. In most genotypes, discriminant principal component analysis classification was consistent with the original clusters defined by molecular data. Differences in results from molecular and morphological data indicate that they provide complementary and relevant information for establishing genetic relationships among chickpea materials and a better description and interpretation of the available variability in the germplasm collection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信